
CHAPTER V.  GENERAL CONFIGURATION PRACTICES AND PROCEDURES

V.A. Common practices

In addition to the tutorials and instructions available from online documentation 

([38]), the author developed practices which proved to be useful while attempting to 

determine the causes of various errors encountered while configuring an arbitrary 

simulation:

V.A.1. Use valid “model_name::interface_name” addressing

For Player to communicate successfully with Gazebo, Player must know what 

interfaces Gazebo is providing.  Determining the valid address for interfaces was more 

difficult than anticipated.  However, valid values for “model_name::interface_name” 

addressing in Player configuration files may be determined by reviewing the available 

interfaces in directory “/tmp/gazebo...” corresponding to the user's running 

instance of Gazebo, which are defined by the world file.  For example, loading the model 

used to evaluate rollover of a representative challenge vehicle entering 2004 GCE course 

segment 2570-2571-2572 (see Appendix F) creates a 

“position.cv_model::position_iface_0” interface in directory 

“/tmp/gazebo...”.  The corresponding Player configuration file “gz_id” for this 

interface is therefore “cv_model::position_iface_0”, and this “gz_id” must 

be defined by the Player configuration file before launching Player for Player to 

communicate successfully with Gazebo.

V.A.2. Increase the controller update rate to increase the quality of logged data

A comment in file playerv.c (the playerv utility) states: “20 Hz update rate 

- 37 -



is good for user interaction”.  However, when the author began to log output generated by 

the improved steering controller (“improved controller”) updates were being generated at 

10 Hz.

File Controller.cc attempts to set parameter updateRate when a 

controller is loaded.  Parameter updateRate is not in use by any packaged controllers, 

models, or world files.  As a result, the author was unaware parameter updateRate 

could be declared until he reviewed the Gazebo codebase to identify parameters which 

could be declared.  See paragraph V.A.3. below.

An <updateRate> declaration was included in the  <controller> 

declaration to increase the update rate of the improved steering controller and the quality 

of logged data.

An update rate of 50 Hz gave good results for logging data, with few missed 

intervals, and no observable impact on the ratio of simulation time to real time. 

Increasing the update rate beyond 50 Hz did not result in a significant increase in the 

quality of logged data, and resulted in a greater number of missed intervals.  Decreasing 

the update rate to 10 Hz resulted in instability when the model was traveling at high 

speed.

V.A.3. Review the Gazebo codebase to identify parameters which may be 

declared

The author was unaware parameter updateRate could be declared because it 

was not in use by any packaged controllers, models, or world files.  Review of file 

Controller.cc identified two other parameters which may be declared: name and 

- 38 -



alwaysOn.  Parameter alwaysOn was not in use by any packaged controllers, models, 

or world files.  Parameter name was in common use.

The author reviewed the Gazebo codebase for occurrences of “new ParamT” in 

files to identify parameters which may be declared.  Some files, for example, the 

packaged steering controller, use private class member variables in lieu of parameters.

V.B. Common procedures

The author developed common procedures, some of which were based on tutorials 

and instructions available from online documentation:

V.B.1. Use of the ffmpeg utility to create movies from captured images

The “Save Frames” command in Gazebo was used to capture images during 

simulation, then movies were created from the captured images using the following 

commands:

ffmpeg -f image2 -i UserCamera_0-%04d.jpg [destination]

ffmpeg -i UserCamera_0%04d.jpg [destination]

However, captured images were skewed to the right.  See Figure 2.  Although it 

was possible to create movies from the captured images, the resulting movies were also 

skewed to the right, making it difficult to effectively visualize the simulation.  After 

several attempts, the author abandoned the use of the ffmpeg utility to create movies 

from captured images.

KSnapshot, a screenshot utility packaged with the K Desktop Environment 

(KDE), was used to capture images during simulation, and these images are the images 

included herein.

- 39 -



V.B.2. Patch generation

The following command was used to prepare patches submitted as a result of this 

research:

diff -rup /path/to/unmodified/source /path/to/modified/source

V.C. Model creation

Models of a representative challenge vehicle and obstacles DARPA identified as 

typical of obstacles challenge vehicles would encounter during the 2004 GCE were 

developed during this research.

V.C.1. Representative challenge vehicle

To maximize the re-usability of the model, the author selected a representative 

challenge vehicle which was:

• Successful.

Teams 2005-06, 2005-13, 2005-14, and 2005-16 successfully completed the 2005 

GCE.

• A commercially-available SUV.

A commercially-available SUV was the most common platform selected by teams 

which participated in the 2004 or 2005 GCE.  Commercially-available SUVs were in use 

by Teams 2005-06, 2005-14, and 2005-16.

• Described in sufficient technical detail in published records to model in 

simulation.

Neither challenge vehicle SSF nor height of vehicle CG were reported by 

published records for Team 2005-14 or 2005-16 challenge vehicles.

- 40 -



As a result, the Team 2005-06 challenge vehicle was selected as representative.  A 

model was created using five bodies (“chassis_body”, “left_front_wheel”, 

“right_front_wheel”, “left_rear_wheel”, and “right_rear_wheel”) and associated geoms 

with the physical dimensions and other characteristics of the representative challenge 

vehicle.  The representative challenge vehicle model is described in detail in Appendix F.

Because the selected simulation targets included an evaluation of the rollover 

condition, realistic physical dimensions and other characteristics of the model were 

selected to ensure the track width, height of vehicle CG, and curb weight in simulation 

were identical to those of the representative challenge vehicle.

By default, Gazebo places the CG of a body at its center.  The author did not alter 

the default behavior.  Realistically, the rollover condition is dependent on the location of  

vehicle CG, which may not be at the geometric center of the model's “chassis_body”. 

However, the author considers it likely the representative challenge vehicle CG was very 

close to the left-right centerline of the vehicle, although he acknowledges it may have 

been forward of the front-back centerline of the vehicle due to the weight of the engine.

The distance of the CG from the front-back centerline of the vehicle may affect 

vehicle dynamics, including rollover, but the effect will be much less than that of the 

distance of the CG from the left-right centerline due to the difference between the 

wheelbase and track width dimensions.  For the representative challenge vehicle, the 

distance between front and rear axles (wheelbase) was 1.7 times the track width.  The 

author is confident the contribution to vehicle dynamics, including rollover, of the 

distance between the CG and left-right centerline of the representative challenge vehicle  

- 41 -



is greater than the contribution of the distance between the CG and front-back centerline 

of the vehicle, and considers the model to be accurate enough to evaluate the selected 

simulation targets.

A mesh was created to provide the model with a visual similarity to the 

representative challenge vehicle.  See Figures 3 and 4 for a visual comparison of the 

representative challenge vehicle to the model.  Packaged meshes were used for the 

wheels of the model.

V.C.2. Representative obstacles

DARPA published a description of obstacles teams participating in the 2004 GCE 

could expect to encounter during the 2004 QID and which were representative of 

obstacles teams could expect to encounter during the 2004 GCE: “Dirt Hills”, “Tower 

Obstacle”, “Car Obstacle”, “Steep Hill”, “Sand Trap”, “Ditch”, “Cattle Guard”, 

“Overpass”, “Boulders”, “Moving Car Obstacle”, and “Washboard” ([10]).

To effectively evaluate the simulation targets, two obstacles were selected as 

representative: “Tower Obstacle” and “Car Obstacle”.  The obstacles were modeled using 

the Player Project Model Creation Tutorial ([40]).  The “Car Obstacle” model was based 

on the dimensions and weight of a 2009 Honda Accord.  Meshes were created to provide 

the models with a visual similarity to the representative obstacles.  Unlike the 

representative challenge vehicle, the representative obstacles were modeled using a 

“trimesh” geom primitive11 to provide the most accurate interaction with sensors 

possible12.

See Figures 5, 6, 7, and 8 for a visual comparison of the representative obstacles 

- 42 -

file:///Users/greyman/pub/cnu/699/archive/
file:///Users/greyman/pub/cnu/699/archive/


to the models created by the author.

V.D. Mesh creation

The representative challenge vehicle, representative obstacles, and guides used to 

visually evaluate the interaction of the representative challenge vehicle model with the  

environment required the creation of meshes having arbitrary shapes.  As a result, the 

author created several custom meshes during this research.  The author found the Player 

Project Mesh Creation Tutorial ([41]) to be a useful starting point when creating meshes, 

but it would have required the author to learn to use Blender or another 3D rendering 

application with which the author had no familiarity.  However, the author determined 

Blender ([42]) could be used as an intermediate application.

The author installed blender-2.49a-4.5 using YaST.  Packages 

openal-soft 1.9.616-1.1.1 and libopenal1-soft 1.9.616-1.1.1 

were installed by YaST to resolve dependencies.  The author then installed the Blender 

Exporter ([43]).

The author created models using TurboCAD Mac Deluxe, an application with 

which the author had some familiarity, exported them, and imported them into Blender.  

To determine which file format provided the best compatibility, the author attempted to 

import several different file formats exported from TurboCAD Mac Deluxe (DXF, DWG, 

AI, RAW, WRL, and STL) into Blender, with varying results:

• Several files caused Python script errors.

• Attempting to import a DWG file caused a “DWG-Importer cant find external 

DWG-converter (DConvertCon.exe) in Blender script directory” error 

- 43 -



(“DConvertCon.exe” is a Windows executable).

• WRL files were imported “one-sided”.

• Attempting to import AI files resulted in a “Not a valid file or an empty file” 

error.

The Autocad file format (DXF) had the best compatibility.  As a result, all models 

created by the author were created using TurboCAD Mac Deluxe, exported as Autocad 

Revision 12 (R12) files, and imported into Blender using the DXF importer.

Because Blender was installed on a desktop computer running openSUSE 11.2, 

the author had to specify “Unix (CR)” line-end characters when exporting models from 

TurboCAD Mac Deluxe.  All models created using TurboCAD Mac Deluxe were created 

using metric units.

The author experienced unexpected behavior when importing DXF files into 

Blender because the “origin point” in Blender does not necessarily correspond to the 

origin in TurboCAD Mac Deluxe.  The Player Project Mesh Creation Tutorial states: 

“Move the mesh to the origin.”  Although this is straightforward, importing an Autocad 

file into Blender causes the origin point to shift, even though the apparent origin of the 

model does not appear to have changed from the intersection of the x-, y-, and z-axes. 

The author used Blender's “Center” or “Center Cursor” functions to align the origin point 

with the apparent origin of the model, resolving the problem.

The models were then exported as meshes using the OGRE Mesh Exporter. 

When exporting the meshes using the OGRE Mesh Exporter, the author disabled options 

- 44 -



“Export Materials”, “Fix Up Axis to Y”, or “Require Materials”, enabled option 

“OgreXMLConverter”, and clicked “Export”.

The resulting OGRE mesh files were then copied to the 

/gazebo/Media/models directory or models subdirectory of one of three test 

directories for use.

- 45 -


