

ABSTRACT

Title of Thesis: A Case for Simulation: An Evaluation of the Use of Player and

Gazebo to Identify Key Factors Contributing to Success During the

2004 and 2005 DARPA Grand Challenge

Degree candidate: Jason Clair Allen

Degree and Year: Master of Science 2010

Thesis directed by: Dr. David Hibler, Professor, Department of Physics, Computer

Science, and Engineering

The foundation of this research is a work of critical scholarship. An analysis of objective

evidence available through review of published records was performed. The analysis

supports a conclusion that system integration was the fundamental problem of the Grand

Challenge. During the analysis, key factors contributing to the success of teams

participating in the 2004 and 2005 DARPA Grand Challenge were identified. The use of

simulation as a tool which would have allowed teams to identify some of these key

factors prior to the Grand Challenge was proposed. Simulations were designed to

evaluate selected key factors using Player and Gazebo, free and open source software for

robot and sensor applications. The use of simulation was effective, however successful

simulation was only possible after many problems with the applications Player and

Gazebo were resolved. The use of simulation as a tool to reduce cost, increase emphasis

on artificial intelligence, and decrease emphasis on system integration in the development

of autonomous vehicles is proposed.

A Case for Simulation: An Evaluation of the Use of Player and Gazebo
to Identify Key Factors Contributing to Success During

the 2004 and 2005 DARPA Grand Challenge

By

Jason Clair Allen

Thesis submitted to the Graduate Faculty of
Christopher Newport University in partial

fulfillment of the requirements
for the degree of

Master of Science
2010

Approved:

David Hibler, Chair ___________________________________

David E. Game ___________________________________

Lynn Lambert ___________________________________

Copyright by Jason Clair Allen 2010

All Rights Reserved

PREFACE

The foundation of this research is a work of critical scholarship published as Technical

Report "A Case for Simulation: An Evaluation of the Use of Player and Gazebo to

Identify Key Factors Contributing to Success During the 2004 and 2005 DARPA Grand

Challenge (CNU Technical Report PCSE-2010)", herein referred to as "the Technical

Report". The Technical Report provides relevant technical data, justification for

conclusions, and resolution of discrepancies supporting this research.

- ii -

DEDICATION

I would like to dedicate this research

to my wife, Lisa,

to my mother, Gloria, and

to the civilizations which flourished in the infancy of the Milky Way Galaxy, and

whose stars died, giving the Earth her iron and silicon.

- iii -

ACKNOWLEDGEMENTS

I would first like to thank the members of my thesis committee: Dr. David Hibler,

Dr. David E. Game, and Dr. Lynn Lambert. I would especially like to thank Dr. David

Hibler, my advisor and the chair of my thesis committee, for allowing me to complete

and document the analysis supporting this research. I would like to thank Dr. Antonio

Siochi for his timely assistance as Graduate Program Coordinator. Finally, I would like

to thank Ms. Lyn Sawyer for the continuous assistance and support she has offered since I

first decided to undertake my graduate education.

- iv -

TABLE OF CONTENTS

Section Page

Dedication iii

Acknowledgements iv

List of Tables xix

List of Figures xx

CHAPTER I. INTRODUCTION 1

CHAPTER II. THE CASE FOR SIMULATION 10

II.A. Rationale for the use of simulation 10

II.A.1. Number of potential participants 10

II.A.2. Risk of rollover 14

II.A.3. Stopping distance and field-of-view limitations 14

II.B. Selection of the simulation environment 15

II.C. DARPA evaluation of the use of simulation 16

II.D. Team evaluation of the use of simulation 17

II.E. Limits on the use of simulation 25

II.F. Advantages to the use of simulation 27

CHAPTER III. IDENTIFICATION OF SIMULATION TARGETS 29

III.A. Use Player and Gazebo to evaluate the rollover of a representative challenge

vehicle entering 2004 GCE course segment 2570-2571-2572 29

III.B. Modify Player and Gazebo to implement a two-material friction model and

evaluate the stopping distance of a selected challenge vehicle 30

- v -

III.C. Use Player and Gazebo to evaluate field-of-view limitations for selected

sensors, specifically navigation RADAR 31

III.D. Use Player and Gazebo to evaluate the use of LIDAR, in particular the quality

of the point map created by SICK LMS 200 and 291 LIDAR sensors, and

increase in the number of SICK LMS 291 LIDAR sensors 31

III.E. Modify Player and Gazebo to simulate sensor “noise” 32

CHAPTER IV. GENERAL SIMULATION PROCEDURE 33

IV.A. Develop an installation procedure 33

IV.B. Verify the installation procedure 33

IV.C. Verify Player and Gazebo using packaged world files, configuration files, and

models 33

IV.D. Upgrade Player and Gazebo 34

IV.E. Configure the simulation for the selected simulation targets 35

CHAPTER V. GENERAL CONFIGURATION PRACTICES AND

PROCEDURES 37

V.A. Common practices 37

V.A.1. Use valid “model_name::interface_name” addressing 37

V.A.2. Increase the controller update rate to increase the quality of logged

data 37

V.A.3. Review the Gazebo codebase to identify parameters which may be

declared 38

V.B. Common procedures 39

- vi -

V.B.1. Use of the ffmpeg utility to create movies from captured images 39

V.B.2. Patch generation 40

V.C. Model creation 40

V.C.1. Representative challenge vehicle 40

V.C.2. Representative obstacles 42

V.D. Mesh creation 43

CHAPTER VI. IMPROVED CONTROLLER IMPLEMENTATION 46

VI.A. Independent steering wheel angle 47

VI.B. Odometry 48

VI.C. Additional features of the improved controller 49

VI.D. Parameters in use by the improved controller 51

VI.E. Validation of the improved controller 53

CHAPTER VII. EVALUATION OF 2004 GCE COURSE SEGMENT

2570-2571-2572 61

VII.A. Configuration of the simulation environment 61

VII.B. Simulation procedure 62

VII.C. Results 63

VII.D. Conclusions 65

VII.E. Determination of the onset of rollover 66

CHAPTER VIII. EVALUATION OF THE USE OF LIDAR 67

VIII.A. Configuration of the simulation environment 67

VIII.A.1. Selection of scanning frequency 67

- vii -

VIII.A.2. Selection of parameters rayCount and rangeCount 68

VIII.A.3. Selection of parameter maxRange 69

VIII.B. Revision of the simulation target 69

VIII.C. Simulation procedure 71

VIII.D. Results 71

VIII.E. Conclusions 76

CHAPTER IX. EVALUATION OF FIELD-OF-VIEW LIMITATIONS 80

IX.A. Configuration of the simulation environment 80

IX.B. Simulation procedure 81

IX.C. Results 81

IX.D. Conclusions 81

CHAPTER X. OVERALL CONCLUSIONS 82

CHAPTER XI. FUTURE RESEARCH 86

XI.A. Use a sensor to train the controlling intelligence to interpret other sensors 86

XI.B. Emergence of unexpected behavior 88

XI.C. Development of novel sensor technologies 89

XI.D. Use simulation to train the controlling intelligence to recover from a loss of

sensor data or other sensor failure 90

XI.D.1. Primary obstacle and path detection sensor 90

XI.D.2. GPS sensor failure 94

XI.E. Standardization and standard references 96

XI.E.1. Standard dictionary, acronyms, and abbreviations 96

- viii -

XI.E.2. Standard reference terrain 97

XI.E.3. Standard obstacle and position problems 98

XI.E.4. Team descriptions of standard reference terrain and standard

problems 100

XI.F. Time- and space-shifting 105

XI.G. Acclimation 105

XI.H. Least free energy state 106

XI.I. Experiment with different LIDAR configurations 109

XI.J. Extend the maximum effective range of high-quality sensors 110

XI.K. Use alternate speed setting strategies 111

XI.L. Make provisions to maintain the published record 111

CHAPTER XII. RESEARCH METHODOLOGY 115

APPENDIX A: DEVELOPMENT OF THE INSTALLATION PROCEDURE 146

CHAPTER I. DEFINITIONS AND CONVENTIONS 147

CHAPTER II. METHODOLOGY 148

II.A. Use current, stable, and release versions of applications and source 148

II.B. Use documented installation instructions, when available 149

II.C. Troubleshoot the installation procedure 151

II.C.1. “Optional” libraries 151

II.C.2. Order the installation procedure 152

II.C.3. Maintain a record of errors encountered 152

II.D. Comparison between the installation procedure and alternate installation

- ix -

procedures 154

II.D.1. First alternate comprehensive procedure 154

II.D.1.a. Problem: The alternate procedure refers, incorrectly, to the NVIDIA

Cg library as an “OGRE dependency” 154

II.D.1.b. Resolution: Re-evaluate the installation of Cg 154

II.D.1.c. Problem: The alternate procedure does not require the installation of

CEGUI 154

II.D.1.d. Resolution: Re-evaluate the installation of CEGUI 155

II.D.1.e. Confirm path environment variables 155

II.D.2. Second alternate installation procedure 156

II.D.2.a. Conformance of the installation procedure to the second alternate

installation procedure 159

II.D.2.b. Resolution of problems noted during review of the second and revised

second alternate installation procedures 161

CHAPTER III. DEVELOPMENT OF THE INSTALLATION PROCEDURE 164

III.A. Base installation 164

III.B. Path environment variables 165

III.C. FreeImage 165

III.C.1. Dependencies 165

III.C.2. Installation instructions 166

III.C.3. Install FreeImage 166

III.D. Object-oriented Input System (OIS) 166

- x -

III.D.1. Dependencies 167

III.D.1.a. Problem: OIS, CEGUI, and OGRE are interdependent 167

III.D.1.b. Resolution: None. 168

III.D.2. Installation instructions 168

III.D.2.a. Problem: Option --disable-joyevents is an unrecognized option. 168

III.D.2.b. Resolution: None. Option --disable-joyevents is a valid option. 168

III.D.3. Install OIS 168

III.E. Open Dynamics Engine (ODE) 169

III.E.1. Dependencies 169

III.E.2. Installation instructions 169

III.E.3. Install ODE 169

III.F. Fast Light ToolKit (FLTK) 170

III.F.1. Dependencies 170

III.F.1.a. Install Mesa-devel 170

III.F.2. Installation instructions 171

III.F.2.a. Problem: FLTK failed to compile because of an “invalid conversion”

error 171

III.F.2.b. Resolution: Install FLTK using YaST 171

III.F.3. Install FLTK 171

III.G. CrazyEddie's GUI System (CEGUI) 172

III.G.1. Dependencies 172

III.G.1.a. Install pcre-devel 172

- xi -

III.G.2. Installation instructions 173

III.G.2.a. Problem: OIS, CEGUI, and OGRE are interdependent 173

III.G.2.b. Resolution: None. 173

III.G.2.c. Problem: install failed when attempting to overwrite an existing just-

created file 174

III.G.2.d. Resolution: revise ./configure so that install -C is invoked in lieu of

install -c 178

III.G.3. Install CEGUI 178

III.G.4. After developing the installation procedure, the author determined CEGUI

was not an undocumented dependency 178

III.H. Cg 180

III.H.1. Dependencies 180

III.H.2. Installation instructions 180

III.H.2.a. Problem: after extracting Cg into the ogre directory during the initial

attempt, it was not available to ./configure 180

III.H.2.b. Resolution 181

III.H.2.c. Problem: extracting Cg into the root directory during the initial attempt

preserved the existing user identification and group identification of all

files in the archive 181

III.H.2.d. Resolution 181

III.H.3. Install Cg 182

III.I. OGRE 182

- xii -

III.I.1. Dependencies 183

III.I.1.a. Install zziplib and zziplib-devel 183

III.I.1.b. Problem: GLEW is an undocumented dependency 183

III.I.1.c. Resolution: install glew and glew-devel 184

III.I.1.d. Problem: OIS, CEGUI, and OGRE are interdependent 184

III.I.1.e. Resolution: None. 184

III.I.2. Installation instructions 185

III.I.2.a. Problem: configuration failed because the NVIDIA Cg library was not

installed. The NVIDIA Cg library is optional. 185

III.I.2.b. Resolution: Install Cg using YaST 186

III.I.3. Install OGRE 186

III.J. FFmpeg 186

III.J.1. Dependencies 187

III.J.2. Installation instructions 187

III.J.2.a. Problem: shared libraries were not enabled by default 187

III.J.2.b. Resolution: enable shared libraries 187

III.J.3. Install FFmpeg 187

III.K. Player 188

III.K.1. Dependencies 188

III.K.1.a. Problem: cmake was an undocumented dependency 188

III.K.1.b. Resolution: install cmake 190

III.K.2. Installation instructions 190

- xiii -

III.K.2.a. Problem: the environment variables PYTHON_INCLUDE_PATH and

PYTHON_LIBRARY were set to NOTFOUND 190

III.K.2.b. Resolution: Set BUILD_PYTHONC_BINDINGS to OFF 191

III.K.3. Install Player 191

III.L. Gazebo 191

III.L.1. Problems encountered before installation 192

III.L.1.a. Problem: installation instructions included with online documentation

are incorrect. 192

III.L.1.b. Resolution: None. 193

III.L.1.c. Problem: installation instructions included with packaged

documentation are incomplete. 193

III.L.1.d. Resolution: None. 194

III.L.1.e. Problem: installation instructions provided by online documentation

do not match installation instructions provided by packaged

documentation. 194

III.L.1.f. Resolution: None. 195

III.L.1.g. Problem: online documentation does not provide the latest installation

instructions. 195

III.L.1.h. Resolution: None. 195

III.L.1.i. Problem: Online documentation directs users to the socalwifi-iptv

mailing list archive in lieu of the playerstage-gazebo mailing list

archive. 195

- xiv -

III.L.2. Dependencies 196

III.L.2.a. Problem: a later version of OGRE was required to compile Gazebo

than that documented by the installation instructions 196

III.L.2.b. Resolution: None 197

III.L.2.c. Problem: libxml2-devel was not installed by default 197

III.L.2.d. Resolution: install libxml2-devel 197

III.L.2.e. Problem: during the initial attempt the author concluded packages

freeglut and openal were undocumented dependencies 197

III.L.2.f. Resolution: packages freeglut and openal are optional libraries, not

undocumented dependencies 198

III.L.2.g. Problem: boost-devel is an undocumented dependency. 198

III.L.2.h. Resolution: None. 198

III.L.3. Installation instructions 199

III.L.3.a. Problem: scons is no longer used to configure or compile Gazebo 199

III.L.3.b. Resolution: None. 199

III.L.3.c. Problem: an attempt to compile Gazebo resulted in a “cannot convert”

error 199

III.L.3.d. Resolution: revise file Audio.cc to eliminate the source of the

error 200

III.L.4. Install Gazebo 200

APPENDIX B: INSTALLATION PROCEDURE 202

I. PATH ENVIRONMENT VARIABLES 203

- xv -

II. INSTALL FREEIMAGE 203

III. INSTALL OIS 203

IV. INSTALL ODE 204

V. INSTALL FLTK 204

VI. INSTALL CG 204

VII. INSTALL OGRE 204

VIII. INSTALL FFMPEG 205

IX. INSTALL PLAYER 205

X. INSTALL GAZEBO 206

APPENDIX C: VERIFICATION OF THE INSTALLATION PROCEDURE 207

I. CONVENTIONS 208

II. ARCHIVE THE BASE INSTALLATION 208

III. DEVELOP THE INSTALLATION PROCEDURE 208

IV. DOCUMENT THE INSTALLATION PROCEDURE 208

V. RESTORE THE BASE INSTALLATION 208

VI. UNINSTALL APPLICATIONS AND SOURCE INSTALLED IN

ACCORDANCE WITH APPENDIX B 208

VI.A. FreeImage 209

VI.B. FLTK 209

VI.C. Cg 209

VI.D. Player 209

VI.E. Gazebo 210

- xvi -

VII. RE-INSTALL APPLICATIONS AND SOURCE IN ACCORDANCE WITH

APPENDIX B 210

VII.A. Step “Path environment variables” 210

VII.B. Step “Install Cg” 211

VII.C. Step “Install Player” 211

VIII. VERIFY A WORKING INSTALLATION OF GAZEBO 211

APPENDIX D: IMPROVED STEERING CONTROLLER AND WHEEL 212

APPENDIX E: EXAMPLE OUTPUT PRODUCED DURING CONTROLLER

VALIDATION 230

APPENDIX F: EXAMPLE WORLD FILE AND MODEL FILE USED DURING

EVALUATION OF 2004 GCE COURSE SEGMENT 2570-2571-2572 233

APPENDIX G: MISCELLANEOUS PROBLEMS ENCOUNTERED 243

I. PROBLEMS ENCOUNTERED WHILE VERIFYING PLAYER AND

GAZEBO 244

I.A. Gazebo “Namespace prefix ... is not defined” errors 244

I.B. Player “Unhandled message for driver device” error 244

I.C. ODE “bNormalizationResult” error 245

I.D. Playerv “Devices>position2d” menu 247

I.E. Gazebo “ODEHingeJoint.cc” error 248

II. PROBLEMS ENCOUNTERED WHILE VALIDATING THE IMPROVED

CONTROLLER 249

II.A. Gazebo ODEHinge2Joint::GetAngle and GetVelocity problem 249

- xvii -

II.B. Swaybar implementation 253

III. PROBLEMS ENCOUNTERED DURING EVALUATION OF THE

SIMULATION TARGETS 255

III.A. “ODE Message 3” error 255

III.B. Angular unit inconsistencies between Player and Gazebo 256

III.C. ODEHinge2Joint <anchorOffset> problem 257

III.D. OGRE::AxisAlignedBox error 262

- xviii -

LIST OF TABLES

Number Page

I. Approximate simulation time at which rollover occurs at velocity offset. 56

II. Results of the evaluation of the use of LIDAR. 75

III. Team reference numbers. 126

- xix -

LIST OF FIGURES

Number Page

1. Approximate simulation time at which rollover occurs versus velocity offset. 57

2. Example image saved by Gazebo. 128

3. Team 2005-06 challenge vehicle. 129

4. Model of the representative challenge vehicle. 130

5. Tower obstacle (DARPA description). 131

6. Tower obstacle (Gazebo model). 132

7. Car obstacle (DARPA description). 133

8. Car obstacle (Gazebo model). 134

9. 2004 GCE course superimposed on map and satellite view (Powerline Road 1). 135

10. 2004 GCE course superimposed on map and satellite view (Powerline Road 2). 136

11. Vertically-aligned LIDAR sensor configuration. 137

12. Horizontally-aligned LIDAR sensor configuration (overhead view). 138

13. Horizontally-aligned LIDAR sensor configuration (driver's seat view). 139

14. Horizontally-aligned LIDAR sensor configuration with a down angle of 4 degrees

(overhead view). 140

15. Diagonally-aligned LIDAR sensor configuration (overhead view). 141

16. Diagonally-aligned LIDAR sensor configuration (driver's seat view). 142

17. Epsilon Lambda ELSC71-1A RADAR field-of-view limitation (simulation initial

state). 143

18. Epsilon Lambda ELSC71-1A RADAR field-of-view limitation (showing the sensor

- xx -

cannot detect an obstacle in the path of travel). 144

19. Epsilon Lambda ELSC71-1A RADAR field-of-view limitation (after collision with

the tower obstacle). 145

- xxi -

CHAPTER I. INTRODUCTION

The Defense Advanced Research Projects Agency (DARPA) established the

Grand Challenge to “promote innovative technical approaches that will enable the

autonomous operation of unmanned ground combat vehicles.” ([1] and [2], p. 4).

DARPA described the Grand Challenge as a race during which autonomous vehicles

would be required to “navigate from point to point in an intelligent manner so as to avoid

or accommodate obstacles and other impediments to the completion of their missions.”

([1]) or, worded slightly differently, to “navigate from point to point in an intelligent

manner to avoid or accommodate obstacles including nearby vehicles and other

impediments.” ([2], p. 4).

No challenge vehicle successfully completed the 2004 Grand Challenge Event

(GCE).

Following the 2004 GCE, DARPA reported ([3], pp. 1 - 2)1:

Rationale for Using Congressional Prize Authority for

Autonomous Ground Vehicle Development

Following a series of studies, and influenced by a

Congressional directive1, DARPA determined that the

first use of the Congressional prize authority would

be in the area of autonomous ground vehicles with the

following goals:

• Increase the number of performers working on

autonomous ground vehicle technologies.

• Provide DoD access to new talent, new ideas, and

- 1 -

innovative technologies by motivating and

enlisting innovators that would not normally work

on a DoD problem.

• Accelerate autonomous ground vehicle technology

development in the United States in the areas of

sensors, navigation, control algorithms, vehicle

systems, and systems integration.

1 Congress expressed a clear interest in accelerating unmanned

vehicle capabilities and, in fact, set a goal for the Department

of Defense: The Fiscal Year 2001 National Defense Authorization

Act states, “It shall be the goal of the Armed Forces to achieve

the fielding of unmanned remotely controlled technology such

that...by 2015, one-third of the operational ground combat

vehicles of the Armed Forces are unmanned.” Given the aggressive

timeline in the directive, DARPA determined that organizing a

prize authority event would be the quickest and most cost-

effective approach to stimulate innovation and expand the

research community in autonomous ground vehicle technologies.

Based on the results of the 2004 GCE, DARPA held a second Grand Challenge in

2005. On October 8, 2005, four teams participating in the 2005 GCE successfully

completed the course. A fifth team completed the course the next day. DARPA awarded

the prize of $2 million to Team 2005-16, the first team to complete the course.

The successful completion of the 2005 GCE was widely considered to be a

significant achievement. DARPA stated: “The results prove conclusively that

- 2 -

autonomous ground vehicles can travel long distances over difficult terrain at militarily

relevant rates of speed.” ([5]).

However, the actual goal of the Grand Challenge was concealed by the format of

the Grand Challenge as a race. As noted by DARPA1, the Fiscal Year 2001 National

Defense Authorization Act states: “It shall be a goal of the Armed Forces to achieve the

fielding of unmanned, remotely controlled technology such that...by 2015, one-third of

the operational ground combat vehicles are unmanned.” ([4], p. 46).

DARPA published rules prior to the 2004 and 2005 GCE. The rules reported a

problem statement which was revised continuously prior to the 2004 GCE, through the

2004 GCE itself, to successful completion of the 2005 GCE. DARPA published

clarifications to the rules, but also revised course length, maximum corrected time, and

expectation of obstacle avoidance:

• DARPA revised the maximum corrected time of the 2004 GCE from greater than

10 hours to 10 hours on April 1, 2003, several weeks after the official start of the

2004 GCE on February 22, 2003.

• DARPA revised the proposed 2004 GCE course length continuously from the

official start of the 2004 GCE on February 22, 2003 through the publication of

revision “5 January 2004” of the 2004 GCE rules on January 5, 2004 from 300

miles to less than 210. The reported 2004 GCE course length was 142 miles.

• DARPA stated the 2005 GCE course length would not exceed 175 miles. The

reported 2005 GCE course length was 131.6 miles.

• Prior to the 2004 QID or GCE, DARPA stated: “DARPA intends to clear the

- 3 -

Challenge Route of non-Challenge traffic and obstacles, but can not guarantee

that there will be no non-Challenge traffic, obstacles, or humans on the Challenge

Route... Sensing and processing designs must be able to avoid collisions with any

obstacle, moving or static, that may exist on the route.” ([1] and [6]). As a result,

DARPA established an expectation that teams participating in the 2004 GCE

would not encounter obstacles deliberately placed on the 2004 GCE course by

DARPA to test and evaluate challenge vehicle obstacle detection and avoidance.

• Prior to the 2005 GCE, DARPA stated: “The vehicle must avoid collisions with

any obstacle, moving or static, on the route. DARPA will place obstacles along

the route to test obstacle avoidance capabilities.” ([2], p. 22). DARPA later stated:

“...vehicles were required to detect and avoid obstacles along the route...” ([7],

p. 4) and “The 132-mile route contained a series of graduated challenges

beginning with a dry lake bed, narrow cattle guard gates, narrow roads, tight

turns, highway and railroad underpasses... Vehicles passed through tunnels and

avoided more than 50 utility poles situated along the edge of the road.” ([7], p. 9).

Although both of these claims are true, DARPA did not report obstacles were

placed along the route “to test obstacle avoidance capabilities”.

• DARPA placed obstacles on both the 2004 Qualification, Inspection, and

Demonstration (QID) and 2005 National Qualification Event (NQE) courses to

evaluate challenge vehicle obstacle detection and avoidance capabilities.

In addition, a detailed course analysis indicates course difficulty changed between

- 4 -

2004 and 2005. For various reasons, the 2005 GCE course was not as difficult as the

2004 GCE course. For example:

• The 2005 GCE course was located on terrain with much less slope overall than

the 2004 GCE course.

• The 2005 GCE RDDF eliminated extreme lateral boundary offset and course

segment lengths similar to those defined by the 2004 GCE RDDF.

• The length of the 2005 GCE course was 131.6 miles, less than the 142-mile length

of the 2004 GCE course. The maximum corrected time was not reduced to ensure

an “average minimum speed of approximately 15 - 20 mph” ([3], p. 2) was

achieved for either event.

• The 2005 GCE RDDF defined more waypoints than the 2004 GCE RDDF. As a

result of this increase and the decrease in length of the 2005 GCE course

compared to the 2004 GCE course the average distance between adjacent

waypoints decreased and waypoint density increased.

• The 2005 GCE course was, overall, “smoother” than the 2004 GCE course. As a

result of the increase in waypoint density, the 2005 GCE RDDF required more

changes in bearing than the 2004 GCE RDDF, but these changes in bearing were

less severe than those required by the 2004 GCE RDDF.

• The 2005 GCE RDDF defined forced deceleration lanes before significant terrain

features.

In summary, the evidence supports a conclusion that the 2005 GCE course was

- 5 -

engineered and “groomed” to reduce its difficulty and increase the opportunity that at

least one challenge vehicle would successfully complete the course.

The problem statement reported by DARPA was ostensibly one of autonomous

navigation. Teams which participated in the 2004 and 2005 GCE were required to

develop an autonomous vehicle with a controlling intelligence able to:

• distinguish the course from terrain that was unnavigable or was declared off-

limits2 based on detailed course information withheld until two hours prior to the

event, and which identified the course and established speed limits which the

controlling intelligence was required to observe, and

• navigate the course identified, while

• detecting and avoiding unintended obstacles encountered on the course,

• in less than ten hours at an average speed greater than 15 mph.

To “win”, teams were required to develop the autonomous vehicle which

completed the course in the least “maximum corrected time”.

These problems were, to various degrees, solved prior to the Grand Challenge. As

a result, based on a comprehensive review of published records, the author concluded the

problem statement reported by DARPA concealed the fundamental problem of the Grand

Challenge (“fundamental problem”), which was system integration:

• The Grand Challenge required teams to integrate sensor data intelligently, and

integrate computer hardware with various sensors and the research platform on

which they are mounted. Some teams which focused on the fundamental problem

- 6 -

were potentially disruptive.

• The vast majority of failures during the 2004 and 2005 GCE were not failures of

artificial intelligence, but system integration failures.

The Grand Challenge was therefore more a test of successful system integration

than successful artificial intelligence, and the conditions of the Grand Challenge favored

teams with greater experience and sponsorship.

As a result, in the broader context it is important to place the Grand Challenge in

perspective, and determine what, exactly, the successful teams achieved in 2005.

In general, teams which participated in the Grand Challenge described the

technical details and information concerning their approach to solving the fundamental

problem in published records. Some team solutions demonstrate technical achievement

in system integration. Analysis indicates that most teams spent a significant amount of

money on their solutions to the problem, and that the total cost of team solutions

represents an investment which exceeds what the Department of Defense may reasonably

be expected to pay to procure them.

In addition, team challenge vehicles were mindless automatons incapable of true

autonomous navigation, although some team challenge vehicles were capable of

autonomous obstacle detection and avoidance and path detection while following a

“bread crumb” trail.

As a result, team solutions were impractical solutions to the problem of

autonomous navigation.

- 7 -

Although DARPA reported the Grand Challenge proved “...conclusively that

autonomous ground vehicles can travel long distances over difficult terrain at militarily

relevant rates of speed.” ([5]), significant progress toward the goal of the Department of

Defense to have one-third of operational ground combat vehicles unmanned by 2015 has

not been made in the years since the 2005 GCE.

The author gained a greater appreciation for the difficulty teams participating in

the 2004 and 2005 GCE must have faced while completing this research. However, the

perspective of this research is that the Grand Challenge was a failure, despite the fact that

prize money was awarded by DARPA, for the following reasons:

• the technical achievement was consistent with the state of the art,

• the development of basic algorithms and strategies for control of an autonomous

vehicle was not the focus of the Grand Challenge,

• the cost of proposed solutions far exceeds what the Department of Defense may

reasonably be expected to pay to procure them, and

• DARPA failed to structure the Grand Challenge to ensure long-term realization of

its stated goals, and

• significant progress toward the actual goal has not been made in the years since

the 2005 GCE.

The author asserts the use of simulation as a complement to the Grand Challenge

would have provided teams participating in the Grand Challenge with a way to identify

- 8 -

key factors contributing to success prior to field trials, increased focus on the

development of basic strategies and algorithms to enhance the intelligence of autonomous

vehicles, and provided a way to increase the competitiveness of the Grand Challenge by

“leveling the playing field”, allowing teams with less experience or sponsorship to

compete on a more even basis with teams with significant experience or sponsorship.

- 9 -

CHAPTER II. THE CASE FOR SIMULATION

II.A. Rationale for the use of simulation

II.A.1. Number of potential participants

Perhaps the best rationale for the use of simulation may be provided by reviewing

the interest with which the announcement of the Grand Challenge was greeted by

potential participants ([8] and [3]):

DARPA received 106 applications for the 2004 GCE. Eighty-six teams submitted

technical proposals by the deadline established by DARPA. Of the 86 technical

proposals received, 45 teams proposed autonomous vehicles of interest to the DOD3.

However, it did not appear as if all 45 teams would have vehicles ready in time to

participate in the 2004 GCE. DARPA evaluated the technical proposals for 19 teams as

“completely acceptable”, and selected these teams for advancement to the next phase of

the Grand Challenge. DARPA evaluated the technical proposals for an additional 26

teams as “possibly acceptable” and established a site visit process to determine the final

teams4.

On December 19, 2004, DARPA announced 25 teams from around the United

States were selected to participate in the next phase of the Grand Challenge:

Qualification, Inspection, and Demonstration (QID). The QID was used to determine the

final 20 participants for the Grand Challenge. The 25 teams that passed the technical

proposal review process were invited to the QID to take place March 8 through 12, 2004.

Twenty-one teams participated. The QID comprised several distinct activities: a safety

and technical inspection of the team challenge vehicle5; a separate practice area; and a

- 10 -

demonstration course which was approximately 1.4-mile long that the vehicle was

required to traverse.

The demonstration course allowed DARPA to evaluate the ability of each

challenge vehicle to sense a series of static and moveable obstacles representative6 of

those that might be found on the actual 2004 GCE course, and navigate a course

described by a series of adjacent waypoints. Each vehicle was ranked according to its

overall time to complete the course, and point deductions7 were taken for impacting

obstacles, exceeding established speed limits, or deviating from the established course.

Over a five day period, eight teams completed the 2004 QID course, nine teams

partially completed the course, two teams terminated within the starting chute area, and

two teams officially withdrew. On March 12, 2004 DARPA announced 15 of 21 teams

which participated in the 2004 QID qualified for the 2004 GCE.

In summary, only 15 of 106 applicants were allowed to participate in the 2004

GCE. No challenge vehicle which qualified was able to complete the 2004 GCE. To

achieve this result, DARPA effectively eliminated 91 of 106 potential applicants,

removing incentive those teams may have had to participate in the Grand Challenge and

provide access to “new talent, new ideas, and innovative technologies” or develop

autonomous ground vehicle technologies in the areas of “sensors, navigation, control

algorithms, vehicle systems, and systems integration”.

If the purpose of the Grand Challenge was that stated by DARPA (see Chapter I.),

the Grand Challenge was either a marginal success or an abject failure, depending on

perspective. From one perspective, the Grand Challenge was a marginal success because

- 11 -

DARPA was able to achieve some of its goals, although to a limited extent. The author

considers it likely:

• the number of individuals, groups, or organizations working on autonomous

ground vehicle technologies increased during the years before and immediately

after the Grand Challenge,

• the Grand Challenge motivated individuals that would not normally work on a

“DOD problem”, and

• the Grand Challenge resulted in some development of autonomous ground vehicle

technologies in the areas of sensors, navigation, control algorithms, vehicle

systems, and systems integration.

The author is aware of no evidence which directly supports or refutes these

assertions. For example, the author is aware of no survey of the robotics community

before and after the Grand Challenge which supports an assertion that the number of

individuals, groups, or organizations working on autonomous ground vehicle

technologies increased during the years before and immediately after the Grand

Challenge, and has since decreased. However, the author considers it unreasonable to

assert, given the published record, that some progress has not been made, in particular in

the development of autonomous ground vehicle technologies. The difference, to the

author, lies in the intention and meaning of words such as “accelerate”, or the duration of

time during which DARPA expected the Grand Challenge to provide the DOD with

access to “new talent, new ideas, and innovative technologies”.

- 12 -

From another perspective the Grand Challenge was an abject failure. Although

four teams successfully completed the 2005 GCE, the three teams with the best times,

including the winner, Team 2005-16, were representatives of a single academic institution

in all but name: Carnegie Mellon University. Team 2005-16 did not participate in the

2004 GCE. The Team 2005-16 team leader was a faculty member at Carnegie Mellon

University when the Grand Challenge was officially announced on February 22, 2003 and

transferred to Stanford University in July, 2003 approximately eight months before the

2004 GCE took place on March 13, 2004.

The Grand Challenge might have been a very close competition and a significant

number of the teams participating in the Grand Challenge might have successfully

completed the 2004 or 2005 GCE course, demonstrating proficiency in the skills required

to develop an autonomous vehicle. As a result, the DOD might have gained increased or

lasting access to “new talent, new ideas, and innovative technologies” or DARPA might

have accelerated the development of autonomous ground vehicle technologies in the

areas of “sensors, navigation, control algorithms, vehicle systems, and systems

integration” to a greater extent.

By restricting the number of participants to the few teams with experience or

sponsorship which were able to field a research platform, DARPA virtually guaranteed

the eventual outcome of the 2004 and 2005 GCE: the only team which successfully

completed the 2005 GCE and which was not closely tied to Carnegie Mellon University

was Team 2005-06, which placed fourth during the 2005 GCE, and emerged as the only

disruptive team which participated in either the 2004 or 2005 GCE.

- 13 -

II.A.2. Risk of rollover

Objective evidence supports a conclusion the 2005 GCE course was engineered

and “groomed” to be less difficult than the 2004 GCE course to reduce the risk of

rollover. Although some teams were aware of the risk of rollover, the author has not

encountered an alternate detailed route analysis which indicates a team was aware of the

extent to which the 2005 GCE course was engineered by DARPA. Although the author

was unable to determine the total cost of team challenge vehicles, published records

report costs from $35,000 to in excess of $3 million. As a result, the potential impact due

to rollover was significant.

II.A.3. Stopping distance and field-of-view limitations

Review of team technical proposals supports a conclusion the teams had difficulty

visualizing the interaction of their challenge vehicles with the environment, with

potentially significant consequences, such as challenge vehicles traveling at speeds

exceeding their stopping distance or an inability to adequately detect obstacles during a

turn or on sloped terrain.

The use of simulation is proposed specifically to address these deficiencies. The

use of simulation would:

• support autonomous vehicle development without requiring the sponsor of such

research to engineer a course able to be completed by research platforms

consistent with the state of the art,

• encourage participation in autonomous vehicle development by individuals and

- 14 -

institutions not having the resources required to develop a research platform,

• minimize the risk of rollover to research platforms until the necessary

technologies were developed to enable the controlling intelligence to adequately

evaluate the risk,

• allow teams to visualize the interaction of the research platform with the

environment,

• provide teams with a way to identify some key factors which does not require

procurement of a research platform or sensors to perform test and evaluation,

• increase focus on the development of basic algorithms and strategies,

• provide a way to increase competitiveness by “leveling the playing field”, and

• provide a tool which would help ensure long-term realization of DARPA's stated

goals.

Overall, the use of simulation would allow teams to focus on the basic algorithms

for using environment and geolocation sensors, and place the focus of autonomous

vehicle development on artificial intelligence, not system integration, and “level the

playing field” between teams with more experience and those with less experience.

II.B. Selection of the simulation environment

The most common approach to integrating hardware and software in use by teams

which participated in the 2004 and 2005 GCE may be described as a “mixed” or

“composite” architecture, where disparate, distributed elements were integrated using

client-server relationships. These elements can be reproduced through the use of

- 15 -

simulation. Therefore, one of the most important considerations for developing an

architecture for simulation of an autonomous vehicle was the simulation environment

itself. The author developed a list of requirements and desired features of the simulation

environment, the first and most important of which was that it be free for academic use,

with a preference for Free and Open Source Software (FOSS). Commercial software was

not evaluated. Other requirements and desired features of the simulation environment

included (in no particular order):

• Cross-platform availability.

• A graphical user interface using OpenGL.

• High-fidelity, rigid-body three-dimensional (3D) physics simulation, including

collision detection and 6 degrees of freedom.

• Support for popular image formats and cameras.

• Terrain rendering.

• An active user community and developer base.

A review of available FOSS alternatives revealed the Player Project satisfied the

author's requirements, with some caveats. In addition, the Player Project provided other

desirable features, such as the ability to use XML files to configure the simulation, and

could be extended by the author. As a result, the author selected the Player Project,

specifically the applications Player and Gazebo, to complete this research.

II.C. DARPA evaluation of the use of simulation

The author is unaware of any published record that reports DARPA, following the

- 16 -

2004 or 2005 GCE, concluded that high-fidelity simulation was necessary, desirable, or

even useful. From one perspective, this is certainly true. By engineering the 2005 GCE

course, DARPA was able to create conditions which made it possible for several teams to

successfully complete the 2005 GCE. In addition, a number of key factors contributed to

team success (herein referred to as “key factors contributing to success” or “key factors”).

However, the fundamental problem of the Grand Challenge was system

integration, not autonomous navigation or artificial intelligence, and the cost of fielding a

research platform was prohibitive - out of reach for most individuals and even most

academic institutions without corporate sponsorship. Although the author was unable to

determine the total cost of team challenge vehicles, available evidence supports a

conclusion that team challenge vehicles represented a considerable investment in terms of

time and material resources.

Via the “Team Resources” section of the archived Grand Challenge 2004 website

([11]), DARPA hosted an “Outside Resources/Links” link to technical resources such as

the Carnegie Mellon Navigation Toolkit (CarMeN) and many other libraries,

applications, and utilities written to solve portions of the autonomous vehicle

development problem. DARPA did not, however, include the the Player Project on the

list of technical resources. None of the technical resources to which DARPA referred

provided a simulation environment similar to the Player Project.

II.D. Team evaluation of the use of simulation

Via 2005 GCE Standard Question (SQ) 2.5.18 DARPA requested teams: “Describe

the testing strategy to ensure vehicle readiness for DGC, including a discussion of

- 17 -

component reliability, and any efforts made to simulate the DGC environment.” Sixteen

of 48 teams which participated in the 2004 QID or GCE or 2005 GCE referred to the use

of simulation. Six of 48 specifically referred to the Player Project or to a simulation

environment similar to the Player Project.

• Team 2005-02

Team 2005-02 stated: “To support bench testing, a simple vehicle simulator

component was devised that sends out position- and velocity-related JAUS messages as if

the vehicle were moving through an RDDF corridor.” ([12], pp. 616 - 617).

• Team 2005-04

Team 2005-04 stated: “Portions of the software were tested on different

simulation and emulation environments. Two specific simulation environments were

developed for testing obstacle avoidance. One was a simple, flexible 2-D package for

initial testing. The second was based on the Player/Gazebo environment and with the

3-D developments made, could actually include terrain configurations from real data.”

([13], p. 6).

Team 2005-04 later referred to the use of simulation ([14]), but not specifically to

the Player Project.

• Team 2005-05

Team 2005-05 stated: “[The challenge vehicle controlling intelligence] could be

driven by real-time sensor data, by a simple simulator, or from previously recorded log

data. The simulator was invaluable for debugging the high-level behaviors of the

planner, but its models were not accurate enough to tune the low-level controllers. The

- 18 -

replay mode allowed us to debug the ladar obstacle filters and the state estimators in a

repeatable way, without having to drive the vehicle over and over.” ([15], p. 531).

• Team 2005-09

Team 2005-09 referred to the use of simulation as part of their autonomous

vehicle development process throughout their technical proposal ([16]), but did not refer

to a specific simulation environment. Team 2005-09 did, however, refer to the use of

simulation to “fit” the vehicle's performance in simulation to real-world performance:

“The behavior of [the challenge vehicle] during the test would then (1) drive refinements

to the simulator to more accurately reflect the demonstrations and (2) lead to new

improvements in the software.” ([16], p. 6).

Team 2005-09 later stated: “When a problem was found or a new phenomenon

identified, it was first modeled in the simulation environment. With a simulation of the

problem or new phenomenon in hand, the body of operational code was adjusted to deal

with it. Once proven in simulation, the robot was field tested to evaluate the changes,

and improvements were fed back to the model. A result of the model-build-test approach

was that the model grew in fidelity and became a lasting repository of project

experience.” ([17], p. 835).

• Team 2005-11

Team 2005-11 stated: “[Challenge vehicle] testing included both physical and

software-only simulation runs.” and “Multiple simulation runs, particularly obstacle

avoidance scenarios, were executed prior to field testing.” ([18], p. 9). The author does

not consider this reference to “simulation” to be a reference to a simulation environment

- 19 -

similar to the Player Project.

• Teams 2005-13 and 2005-14

Teams 2005-13 and 2005-14 stated: “In addition to these system tests, [the

challenge vehicle] has tested for software endurance via simulation...” and “Planned tests

include end-to-end race day simulations...” ([19], p. 15, and [20], p. 15). The author does

not consider this reference to “simulation” to be a reference to a simulation environment

similar to the Player Project.

Teams 2005-13 and 2005-14 later referred to testing in simulation of control

routines developed using Simulink ([21], p. 471).

• Team 2005-15

Team 2005-15 stated: “...we have simulation modules that allow for testing of all

other modules, with the exception of the data acquisition modules.” ([22], p. 6) and “In

the lab environment, we use the GAZEBO toolkit to perform system and vehicle

simulations.” ([22], p. 11).

Team 2005-15 later stated: “With the use of the Gazebo simulator ... and tools for

playing back recorded vehicle data, much of the debugging and development could be

carried out on individual laptops; so development work could continue when the vehicle

was not available.” ([23], p. 582).

• Team 2005-17

Team 2005-17 stated: “A vehicle simulator is included in [the challenge vehicle]

software suite. The simulator provides a test environment that emulates the physical

environment in which the vehicle operates. Daily builds of the software are tested

- 20 -

against a collection of test cases gathered from the real world. Developers perform unit

level testing of changes to the software using the combination of the vehicle simulator

and visualization tools included in the software suite.” ([24], p. 10).

Team 2005-17 later stated ([25], p. 563):

[The challenge vehicle's simulator] is a physics-based

simulator developed using the Open Dynamics Engine

physics engine. Along with simulating the vehicle

dynamics and terrain, [the simulator] also simulates

all the onboard sensors. It populates the same

[queues] with data in the same format as the sensor

drivers. It also reads vehicle control commands from

[queues] and interprets them to have the desired

effect on the simulated vehicle.

While [the simulator] is a physics-based simulator,

such as Stage ... and Gazebo ... it has two

interesting differences. First, [the simulator] does

not provide any visual/graphical interface. The

visualization of the world and the vehicle state is

provided by the Visualizer module, discussed later.

Second, [the simulator] also generates a clock, albeit

a simulated one, using the [queues].

Team 2005-17 later stated: “By maintaining a system-wide simulated time, [the

- 21 -

Team 2005-17 simulator] is able to create a higher fidelity simulation than that provided

by Stage and Gazebo. The computation in the entire system can be stopped by stopping

the clock; and its speed can be altered by slowing down or speeding up the clock. This

also makes it feasible to run the application in a single-step mode, executing one cycle of

all programs at a time, thereby significantly improving testing and debugging.” ([25],

p. 563).

Team 2005-17 also stated: “Yet, testing in the current generation of simulation

environments, such as [the Team 2005-17 simulator], Stage[,] ... and Gazebo ... is quite

limited. While these environments are good for doing integration testing, their simulation

abilities are quite limited in providing information about how the vehicle may perform in

the real world, such as, in different terrains and weather conditions.” ([25], p. 577).

• Team 2005-18

Team 2005-18 stated: “Two simulation environments are also used: a dynamic

model of the vehicle motion (including traction) that is used for testing without sensory

input and a Gazebo simulation environment.” ([26], p. 9). Via a footnote on the same

page, Team 2005-18 stated: “The Gazebo simulation environment was used relatively

lightly due to the team’s decision to focus on desert testing.”

• Team 2005-19

Team 2005-19 referred to the use of simulation as part of their autonomous

vehicle development process throughout the team technical proposal ([27]), but did not

refer to a specific simulation environment. Team 2005-19 later referred to “simulated or

logged data”, “numerical simulation”, and “a simulated course” ([28]), but did not refer

- 22 -

to a specific simulation environment.

• Team 2005-20

Team 2005-20 stated: “[Team 2005-20] attempted to implement an open source

robotic simulation environment to assist in the evaluation of the code prior to running on

the robot. This proved to be ineffective since the overhead of the open source package

swamped the limited computational resources available for real-time operation.

Therefore, the real-time code had to be redone outside the open source environment. The

final solution was to develop a simulator utilizing the Team ENSCO developed real-time

code. The simulator estimates where the vehicle position would be based on the

commands sent instead of reading its position from a GPS device, but is otherwise

identical to the software on the robot.” ([29], p. 15).

• Team 2005-21

Team 2005-21 stated: “Modeling and simulation of the [challenge vehicle] was

done using ADAMS to determine vehicle performance over various size obstacles and to

evaluate steering response at various vehicle speeds.” and “Rockwell also developed a

simulation environment that included all of the vehicle dynamics. This simulation was

used to test the vehicle control interface, real-time path planner and behavior control.

Similar to on the vehicle, a series of waypoint could be executed while avoiding planned

obstacles. The 2004 race path was executed several times in this simulation environment

to determine if the vehicle could navigate the entire path.” ([30], p. 13).

Team 2005-21 later stated: “A full vehicle model of the truck was created in

Advanced Dynamic Analysis of Mechanical Systems (ADAMS) by assembling

- 23 -

subsystem models of suspensions, steering, chassis, and tires. A typical NATO Reference

Mobility Model (NRMM) obstacle course with over 70 different obstacles of different

sizes and shapes was used to evaluate the underbody clearance... The results of this

simulation gave an idea about the truck’s capability to maneuver through different

obstacles at low speeds.” ([31], p. 695).

Team 2005-21 participated in the 2004 GCE as Team 2004-23. Team 2004-23

was the only team which participated in the 2004 GCE to refer specifically to the use of a

“simulation environment”9. Team 2004-23 stated: “A simulation model of the Challenge

Vehicle has been developed and the software modules are being tested on the simulation

environment.” ([34], p. 11).

• Team 2005-22

Team 2005-22 stated: “ A vehicle simulator program was also designed to test

conditions and situations that would be difficult, if not impossible, for [the challenge

vehicle] to encounter in Blacksburg. This program creates a virtual map and sensor data

that is relayed to the actual pieces of software that control the vehicle. This simulator,

along with information about [the challenge vehicle's] vehicle dynamics, tested the

algorithms in a virtual space before ever placing them on the vehicle. It also allowed for

testing during conditions where it would normally not be possible, such as at night or

times when [sic]” ([35], pp. 12 - 13).

Teams 2005-22 and 2005-23 did not later refer to the use of simulation ([36]).

• Team 2005-23

Team 2005-23 stated: “A vehicle simulator program was also designed to test

- 24 -

conditions and situations that would be difficult, if not impossible, for [the challenge

vehicle] to encounter in Blacksburg. This program creates a virtual map and sensor data

that is relayed to the actual pieces of software that control the vehicle. This simulator,

along with information about [the challenge vehicle's] vehicle dynamics, tested the

algorithms in a virtual space before ever placing them on the vehicle. It also allowed for

testing during conditions where it would normally not be possible, such as at night or

during heavy rain.” ([37], p. 6).

Teams 2005-22 and 2005-23 did not later refer to the use of simulation ([36]).

II.E. Limits on the use of simulation

Although the approach discussed herein was implemented using Player and

Gazebo, it is important to recognize limits imposed by the use of simulation. Several

teams referred to specific limits on the use simulation:

• Models only approximate real world behaviors

Team 2005-05 stated: “The simulator was invaluable for debugging the high-level

behaviors of the planner, but its models were not accurate enough to tune the low-level

controllers.” ([15], p. 531).

Team 2005-17 stated: “Yet, testing in the current generation of simulation

environments, such as [the Team 2005-17 simulator], Stage[,] ... and Gazebo ... is quite

limited. While these environments are good for doing integration testing, their simulation

abilities are quite limited in providing information about how the vehicle may perform in

the real world, such as, in different terrains and weather conditions.” ([25], p. 577).

Team 2005-18 stated: “The Gazebo simulation environment was used relatively

- 25 -

lightly due to the team’s decision to focus on desert testing.” ([26], p. 9). Although Team

2005-18 did not state their decision to focus on desert testing was driven by a limitation

of Player and Gazebo, the team implied Gazebo did not represent desert terrain with

sufficient fidelity for testing.

Based on the author's experience with Player and Gazebo, the extent to which

models, including simulated worlds, terrain, and obstacles, approximate the real world or

real world behaviors is more dependent on the accuracy of the model and availability of

computing resources than on the simulation environment. The author notes teams

participating in the 2004 and 2005 GCE may have had neither the time nor incentive to

develop accurate models, but considers poor fidelity evidence of a resource allocation

decision or a consequence of limited computing resources. The author does not consider

sufficient evidence is available to conclude poor fidelity is due to an inherent limit on the

use of simulation.

• The use of simulation is computationally intensive

Team 2005-20 stated: “[Team 2005-20] attempted to implement an open source

robotic simulation environment to assist in the evaluation of the code prior to running on

the robot. This proved to be ineffective since the overhead of the open source package

swamped the limited computational resources available for real-time operation.” ([29],

p. 15).

The author concluded an increase in processing power available to the challenge

vehicle controlling intelligence between the 2004 and 2005 GCE was a key factor. The

author asserts an increase in processing power may have addressed the limitation

- 26 -

identified by Team 2005-20.

• Real time versus “simulated time” simulation

Team 2005-17 stated: “By maintaining a system-wide simulated time, [the Team

2005-17 simulator] is able to create a higher fidelity simulation than that provided by

Stage and Gazebo. The computation in the entire system can be stopped by stopping the

clock; and its speed can be altered by slowing down or speeding up the clock. This also

makes it feasible to run the application in a single-step mode, executing one cycle of all

programs at a time, thereby significantly improving testing and debugging.” ([25],

p. 563).

Although the author considers this a feature of the Team 2005-17 simulator, it

does identify a limitation inherent in Player and Gazebo: the simulation can be paused or

slowed by throttling the simulation time step, but not stopped without exiting the

simulation environment, and neither Stage nor Gazebo can be run in single-step mode.

II.F. Advantages to the use of simulation

Several teams referred to specific advantages to the use simulation:

• Reproducibility

Team 2005-05 stated: “The replay mode allowed us to debug the ladar obstacle

filters and the state estimators in a repeatable way, without having to drive the vehicle

over and over.” ([15], p. 531).

• Software development is independent of hardware development

Team 2005-15 stated: “With the use of the Gazebo simulator ... and tools for

playing back recorded vehicle data, much of the debugging and development could be

- 27 -

carried out on individual laptops; so development work could continue when the vehicle

was not available.” ([23], p. 582).

• The use of simulation increases the number of available test environments or

conditions

Team 2005-22 stated: “ A vehicle simulator program was also designed to test

conditions and situations that would be difficult, if not impossible, for [the challenge

vehicle] to encounter in Blacksburg. ... It also allowed for testing during conditions where

it would normally not be possible, such as at night or times when [sic]” ([35],

pp. 12 - 13).

Team 2005-23 stated: “A vehicle simulator program was also designed to test

conditions and situations that would be difficult, if not impossible, for [the challenge

vehicle] to encounter in Blacksburg. ... It also allowed for testing during conditions where

it would normally not be possible, such as at night or during heavy rain.” ([37], p. 6).

- 28 -

CHAPTER III. IDENTIFICATION OF SIMULATION TARGETS

The author identified the following potential “simulation targets” to determine if

simulation could be used to evaluate the conclusions documented throughout this

research.

III.A. Use Player and Gazebo to evaluate the rollover of a representative challenge

vehicle entering 2004 GCE course segment 2570-2571-2572

Simulating 2004 GCE course segment 2570-2571-2572 would allow the author to

test the conclusion that no challenge vehicle would have been able to make this turn at

the RDDF-allowed speed of 60 mph and would have either rolled over or exceeded the

lateral boundary offset and consequently left the course less than one kilometer

(890.1 m), or less than two minutes (100 seconds), from the end of the course.

The risk of rollover can be evaluated in simulation by accelerating a realistic

model of a challenge vehicle to the 2004 RDDF-allowed speed of 60 mph and then

entering a simulation of 2004 GCE course segment 2570-2571-2572, and documenting:

• whether rollover occurs,

• whether the challenge vehicle exceeds the lateral boundary offset and

consequently leaves the course, or

• whether the use of simulation provides no useful information.

If rollover occurs, the parameters under which rollover occurs in simulation can

then be compared to real-world results to determine if the use of simulation would have

enabled teams to identify the risk of rollover.

- 29 -

Realistically, this would require “fitting” a SSF to the challenge vehicle. The

inclusion of sensors and computing hardware increases the weight of challenge vehicles,

and the use of roof racks as mount points for sensors may have caused challenge vehicles

to be “top-heavy” by raising their center of gravity (CG), either of which will affect SSF.

Although it is possible to create a model of a challenge vehicle with the physical

characteristics of a challenge vehicle in simulation, including dimensions and weight,

creation of a realistic model of a challenge vehicle is not possible without knowing the

relative positions and weights of the various components in use by the team.

For this reason, a simple model having a SSF matching a selected challenge

vehicle was chosen. This model is described in detail in paragraph V.C.1. and Appendix

F.

III.B. Modify Player and Gazebo to implement a two-material friction model and

evaluate the stopping distance of a selected challenge vehicle

Implementing a two-material friction model would allow the author to modify the

friction coefficient of challenge vehicle wheels and the surface of the course in simulation

and more realistically evaluate the assertion that team challenge vehicles would not have

been able to stop on obstacle detection due to the stopping distance of the vehicle. A two-

material friction model would also allow Player and Gazebo to generically simulate low-

friction surfaces like sand, mud, or rain-slicked roads, which may be useful for training

the controlling intelligence to use one sensor to interpret others. See paragraph XI.A.

Realistically, this would require “fitting” a braking profile to a simulated

challenge vehicle. The braking profile would have to be experimentally determined on a

- 30 -

case basis.

III.C. Use Player and Gazebo to evaluate field-of-view limitations for selected

sensors, specifically navigation RADAR

The author concluded effectively visualizing the interaction of the challenge

vehicle with the environment was a key factor, and that lack of experience was a

contributing factor.

A relatively simple simulation was designed to visualize the interaction of a

selected challenge vehicle with the environment using obstacles DARPA identified as

representative of obstacles challenge vehicles would encounter during the 2004 GCE.

Specifically, the author chose to visualize the maximum distance between the path of

travel in a constant-radius turn and the left- or right-limit of field-of-view, and

demonstrate that sensors with a field-of-view of less than 40º should not have been

selected as a primary obstacle avoidance sensor.

III.D. Use Player and Gazebo to evaluate the use of LIDAR, in particular the quality

of the point map created by SICK LMS 200 and 291 LIDAR sensors, and

increase in the number of SICK LMS 291 LIDAR sensors

The author concluded the increased use of high-quality LIDAR and STEREO

sensors was a key factor because these sensors provide an accurate “point map” of the

environment. The author considers this conclusion well-supported by the facts based on

analysis and the success of teams which participated in the 2005 GCE.

Team 2005-06 successfully completed the 2005 GCE course using only two

unknown SICK LIDAR sensors. All other successful teams used five LIDAR sensors

- 31 -

during the 2005 GCE10.

The two unknown SICK LIDAR sensors in use by Team 2005-06 were configured

atypically compared to other successful teams which used LIDAR sensors, such as Teams

2005-13, 2005-14, and 2005-16. Team 2005-06 configured their LIDAR sensors to scan

in a vertical plane, as opposed to a horizontal plane. The author therefore considers the

orientation of LIDAR sensors to be testable, in addition to the number of LIDAR sensors.

It is possible some patterns using fewer LIDAR sensors provide more useful information

to the controlling intelligence than others using more LIDAR sensors.

III.E. Modify Player and Gazebo to simulate sensor “noise”

Simulated sensors are not subject to the same conditions encountered by research

platforms. Rough terrain, rain, and fog, for example, are difficult to simulate realistically.

However, several teams referred to these limitations specifically in their evaluation of the

potential use of simulation. See paragraph II.E. As a result, the author identified

simulation of sensor “noise” as a potential simulation target.

- 32 -

CHAPTER IV. GENERAL SIMULATION PROCEDURE

The general simulation procedure developed by the author is described as follows:

IV.A. Develop an installation procedure

An installation procedure was developed. This established a reproducible

simulation environment and baseline for any changes. Development of the installation

procedure is documented by Appendix A. The installation procedure is documented by

Appendix B.

IV.B. Verify the installation procedure

The installation procedure was then verified. This ensured the simulation

environment was reproducible. Verification of the installation procedure is documented

by Appendix C.

IV.C. Verify Player and Gazebo using packaged world files, configuration files, and

models

After developing the installation procedure in accordance with Appendix A, and

verifying the installation procedure in accordance with Appendix C, the author attempted

to verify the expected operation of Player and Gazebo using the packaged world files,

configuration files, and models. Because the potential simulation targets required the

author to implement a simulation of a challenge vehicle, the author first attempted to

modify and use the packaged “simplecar” model. The author was unable to verify the

expected operation of Gazebo due to several errors in the Gazebo source code, world

files, and models. For various reasons, Gazebo would fail to load included world files,

Player would not connect to Gazebo, and the playerv utility would not move the

- 33 -

model. At one point while attempting to verify the expected operation of Gazebo, the use

of Stage in lieu of Gazebo was evaluated because of problems encountered. The author

concluded the use of Stage, which provides a “2.5-D” simulation environment, would not

provide enough realism for simulation of a challenge vehicle.

The author spent several weeks modifying Gazebo world files and Player

configuration files and reviewing source code to determine the cause of the problems

encountered. While reviewing the code to determine the cause of the problems

encountered, the author noted that the Gazebo code base is being actively developed, and

that, for reasons unknown, some changes “break” Gazebo in unexpected ways, and that

some revisions of the Gazebo source code include extensive debugging information.

Problems encountered by the author while attempting to verify Player and Gazebo

using packaged world files, configuration files, and models are documented by Appendix

G.

IV.D. Upgrade Player and Gazebo

Review of mailing list archives and resolutions to similar problems encountered

by other users suggested by Gazebo's developers indicates that “upgrade to the latest svn

version” is the general response given when bugs are encountered and ostensibly

resolved. Therefore, while troubleshooting the errors encountered while attempting to

verify Player and Gazebo using packaged world files, configuration files, and models,

later versions of Player and Gazebo were downloaded and installed.

The author downloaded the source distribution of Player 3.0.1 (“player-

3.0.1.tar.gz”) from the Player Project ([38]), un-installed Player version 3.0.0 in

- 34 -

accordance with Appendix C, and installed Player version 3.0.1 in accordance with

Appendix B.

The author uninstalled Gazebo version 8443 as described below, downloaded the

latest revision (revision 8533) of the Gazebo 0.9.0 source code using the svn utility, and

installed Gazebo revision 8533 in accordance with Appendix B.

As discussed in Appendix C, the author was unable to make uninstall or

make clean Gazebo. As a result, when verifying the installation procedure the

existing installation of Gazebo was archived by renaming the containing directory and

manually deleting file .gazeborc. While researching the cmake utility, the author

noted the xargs utility may be used to remove all files installed using the cmake utility

([39]) as follows:

xargs rm < install_manifest.txt

File install_manifest.txt provides a list of all files generated by the

cmake utility during installation. This command was used to uninstall Gazebo.

When upgrading to Gazebo revision 8533, the author noted it was no longer

necessary to modify file audio.cc in accordance with step “Install Gazebo” of

Appendix B. File audio.cc had been revised to correct the error noted by the author.

IV.E. Configure the simulation for the selected simulation targets

After verifying Player and Gazebo using packaged world files, configuration files,

and models and upgrading Gazebo, the simulation was configured for each selected

simulation target. The author selected the following simulation targets:

• Simulation target 1: Use Player and Gazebo to evaluate the rollover of a

- 35 -

representative challenge vehicle entering 2004 GCE course segment 2570-2571-

2572.

• Simulation target 2: Use Player and Gazebo to evaluate the use of LIDAR, in

particular the quality of the point map created by SICK LMS 200 and 291 LIDAR

sensors, and increase in the number of SICK LMS 291 LIDAR sensors.

• Simulation target 3: Use Player and Gazebo to evaluate field-of-view limitations

for selected sensors, specifically navigation RADAR.

Due to time constraints, and the difficulty “fitting” a braking profile to a

simulated challenge vehicle, the author decided not to implement a two-material friction

model.

Due to time constraints, the author decided not to modify Player and Gazebo to

simulate sensor noise.

- 36 -

CHAPTER V. GENERAL CONFIGURATION PRACTICES AND PROCEDURES

V.A. Common practices

In addition to the tutorials and instructions available from online documentation

([38]), the author developed practices which proved to be useful while attempting to

determine the causes of various errors encountered while configuring an arbitrary

simulation:

V.A.1. Use valid “model_name::interface_name” addressing

For Player to communicate successfully with Gazebo, Player must know what

interfaces Gazebo is providing. Determining the valid address for interfaces was more

difficult than anticipated. However, valid values for “model_name::interface_name”

addressing in Player configuration files may be determined by reviewing the available

interfaces in directory “/tmp/gazebo...” corresponding to the user's running

instance of Gazebo, which are defined by the world file. For example, loading the model

used to evaluate rollover of a representative challenge vehicle entering 2004 GCE course

segment 2570-2571-2572 (see Appendix F) creates a

“position.cv_model::position_iface_0” interface in directory

“/tmp/gazebo...”. The corresponding Player configuration file “gz_id” for this

interface is therefore “cv_model::position_iface_0”, and this “gz_id” must

be defined by the Player configuration file before launching Player for Player to

communicate successfully with Gazebo.

V.A.2. Increase the controller update rate to increase the quality of logged data

A comment in file playerv.c (the playerv utility) states: “20 Hz update rate

- 37 -

is good for user interaction”. However, when the author began to log output generated by

the improved steering controller (“improved controller”) updates were being generated at

10 Hz.

File Controller.cc attempts to set parameter updateRate when a

controller is loaded. Parameter updateRate is not in use by any packaged controllers,

models, or world files. As a result, the author was unaware parameter updateRate

could be declared until he reviewed the Gazebo codebase to identify parameters which

could be declared. See paragraph V.A.3. below.

An <updateRate> declaration was included in the <controller>

declaration to increase the update rate of the improved steering controller and the quality

of logged data.

An update rate of 50 Hz gave good results for logging data, with few missed

intervals, and no observable impact on the ratio of simulation time to real time.

Increasing the update rate beyond 50 Hz did not result in a significant increase in the

quality of logged data, and resulted in a greater number of missed intervals. Decreasing

the update rate to 10 Hz resulted in instability when the model was traveling at high

speed.

V.A.3. Review the Gazebo codebase to identify parameters which may be

declared

The author was unaware parameter updateRate could be declared because it

was not in use by any packaged controllers, models, or world files. Review of file

Controller.cc identified two other parameters which may be declared: name and

- 38 -

alwaysOn. Parameter alwaysOn was not in use by any packaged controllers, models,

or world files. Parameter name was in common use.

The author reviewed the Gazebo codebase for occurrences of “new ParamT” in

files to identify parameters which may be declared. Some files, for example, the

packaged steering controller, use private class member variables in lieu of parameters.

V.B. Common procedures

The author developed common procedures, some of which were based on tutorials

and instructions available from online documentation:

V.B.1. Use of the ffmpeg utility to create movies from captured images

The “Save Frames” command in Gazebo was used to capture images during

simulation, then movies were created from the captured images using the following

commands:

ffmpeg -f image2 -i UserCamera_0-%04d.jpg [destination]

ffmpeg -i UserCamera_0%04d.jpg [destination]

However, captured images were skewed to the right. See Figure 2. Although it

was possible to create movies from the captured images, the resulting movies were also

skewed to the right, making it difficult to effectively visualize the simulation. After

several attempts, the author abandoned the use of the ffmpeg utility to create movies

from captured images.

KSnapshot, a screenshot utility packaged with the K Desktop Environment

(KDE), was used to capture images during simulation, and these images are the images

included herein.

- 39 -

V.B.2. Patch generation

The following command was used to prepare patches submitted as a result of this

research:

diff -rup /path/to/unmodified/source /path/to/modified/source

V.C. Model creation

Models of a representative challenge vehicle and obstacles DARPA identified as

typical of obstacles challenge vehicles would encounter during the 2004 GCE were

developed during this research.

V.C.1. Representative challenge vehicle

To maximize the re-usability of the model, the author selected a representative

challenge vehicle which was:

• Successful.

Teams 2005-06, 2005-13, 2005-14, and 2005-16 successfully completed the 2005

GCE.

• A commercially-available SUV.

A commercially-available SUV was the most common platform selected by teams

which participated in the 2004 or 2005 GCE. Commercially-available SUVs were in use

by Teams 2005-06, 2005-14, and 2005-16.

• Described in sufficient technical detail in published records to model in

simulation.

Neither challenge vehicle SSF nor height of vehicle CG were reported by

published records for Team 2005-14 or 2005-16 challenge vehicles.

- 40 -

As a result, the Team 2005-06 challenge vehicle was selected as representative. A

model was created using five bodies (“chassis_body”, “left_front_wheel”,

“right_front_wheel”, “left_rear_wheel”, and “right_rear_wheel”) and associated geoms

with the physical dimensions and other characteristics of the representative challenge

vehicle. The representative challenge vehicle model is described in detail in Appendix F.

Because the selected simulation targets included an evaluation of the rollover

condition, realistic physical dimensions and other characteristics of the model were

selected to ensure the track width, height of vehicle CG, and curb weight in simulation

were identical to those of the representative challenge vehicle.

By default, Gazebo places the CG of a body at its center. The author did not alter

the default behavior. Realistically, the rollover condition is dependent on the location of

vehicle CG, which may not be at the geometric center of the model's “chassis_body”.

However, the author considers it likely the representative challenge vehicle CG was very

close to the left-right centerline of the vehicle, although he acknowledges it may have

been forward of the front-back centerline of the vehicle due to the weight of the engine.

The distance of the CG from the front-back centerline of the vehicle may affect

vehicle dynamics, including rollover, but the effect will be much less than that of the

distance of the CG from the left-right centerline due to the difference between the

wheelbase and track width dimensions. For the representative challenge vehicle, the

distance between front and rear axles (wheelbase) was 1.7 times the track width. The

author is confident the contribution to vehicle dynamics, including rollover, of the

distance between the CG and left-right centerline of the representative challenge vehicle

- 41 -

is greater than the contribution of the distance between the CG and front-back centerline

of the vehicle, and considers the model to be accurate enough to evaluate the selected

simulation targets.

A mesh was created to provide the model with a visual similarity to the

representative challenge vehicle. See Figures 3 and 4 for a visual comparison of the

representative challenge vehicle to the model. Packaged meshes were used for the

wheels of the model.

V.C.2. Representative obstacles

DARPA published a description of obstacles teams participating in the 2004 GCE

could expect to encounter during the 2004 QID and which were representative of

obstacles teams could expect to encounter during the 2004 GCE: “Dirt Hills”, “Tower

Obstacle”, “Car Obstacle”, “Steep Hill”, “Sand Trap”, “Ditch”, “Cattle Guard”,

“Overpass”, “Boulders”, “Moving Car Obstacle”, and “Washboard” ([10]).

To effectively evaluate the simulation targets, two obstacles were selected as

representative: “Tower Obstacle” and “Car Obstacle”. The obstacles were modeled using

the Player Project Model Creation Tutorial ([40]). The “Car Obstacle” model was based

on the dimensions and weight of a 2009 Honda Accord. Meshes were created to provide

the models with a visual similarity to the representative obstacles. Unlike the

representative challenge vehicle, the representative obstacles were modeled using a

“trimesh” geom primitive11 to provide the most accurate interaction with sensors

possible12.

See Figures 5, 6, 7, and 8 for a visual comparison of the representative obstacles

- 42 -

to the models created by the author.

V.D. Mesh creation

The representative challenge vehicle, representative obstacles, and guides used to

visually evaluate the interaction of the representative challenge vehicle model with the

environment required the creation of meshes having arbitrary shapes. As a result, the

author created several custom meshes during this research. The author found the Player

Project Mesh Creation Tutorial ([41]) to be a useful starting point when creating meshes,

but it would have required the author to learn to use Blender or another 3D rendering

application with which the author had no familiarity. However, the author determined

Blender ([42]) could be used as an intermediate application.

The author installed blender-2.49a-4.5 using YaST. Packages

openal-soft 1.9.616-1.1.1 and libopenal1-soft 1.9.616-1.1.1

were installed by YaST to resolve dependencies. The author then installed the Blender

Exporter ([43]).

The author created models using TurboCAD Mac Deluxe, an application with

which the author had some familiarity, exported them, and imported them into Blender.

To determine which file format provided the best compatibility, the author attempted to

import several different file formats exported from TurboCAD Mac Deluxe (DXF, DWG,

AI, RAW, WRL, and STL) into Blender, with varying results:

• Several files caused Python script errors.

• Attempting to import a DWG file caused a “DWG-Importer cant find external

DWG-converter (DConvertCon.exe) in Blender script directory” error

- 43 -

(“DConvertCon.exe” is a Windows executable).

• WRL files were imported “one-sided”.

• Attempting to import AI files resulted in a “Not a valid file or an empty file”

error.

The Autocad file format (DXF) had the best compatibility. As a result, all models

created by the author were created using TurboCAD Mac Deluxe, exported as Autocad

Revision 12 (R12) files, and imported into Blender using the DXF importer.

Because Blender was installed on a desktop computer running openSUSE 11.2,

the author had to specify “Unix (CR)” line-end characters when exporting models from

TurboCAD Mac Deluxe. All models created using TurboCAD Mac Deluxe were created

using metric units.

The author experienced unexpected behavior when importing DXF files into

Blender because the “origin point” in Blender does not necessarily correspond to the

origin in TurboCAD Mac Deluxe. The Player Project Mesh Creation Tutorial states:

“Move the mesh to the origin.” Although this is straightforward, importing an Autocad

file into Blender causes the origin point to shift, even though the apparent origin of the

model does not appear to have changed from the intersection of the x-, y-, and z-axes.

The author used Blender's “Center” or “Center Cursor” functions to align the origin point

with the apparent origin of the model, resolving the problem.

The models were then exported as meshes using the OGRE Mesh Exporter.

When exporting the meshes using the OGRE Mesh Exporter, the author disabled options

- 44 -

“Export Materials”, “Fix Up Axis to Y”, or “Require Materials”, enabled option

“OgreXMLConverter”, and clicked “Export”.

The resulting OGRE mesh files were then copied to the

/gazebo/Media/models directory or models subdirectory of one of three test

directories for use.

- 45 -

CHAPTER VI. IMPROVED CONTROLLER IMPLEMENTATION

To properly simulate the handling of a four-wheeled vehicle, the author performed

an analysis of Ackermann steering geometry, and improved a packaged steering

controller to more closely conform to Ackermann steering geometry.

The author first attempted to use the packaged steering controller. Because the

ability to turn at a constant radius at speeds typical of vehicles participating in the 2004

and 2005 GCE is central to validating several of the conclusions reached throughout this

research, to demonstrate the ability to limit the turning radius of the model to the radius

of the representative challenge vehicle turning circle (37.7 ft or 11.49 m), the author

generated a mesh of two circular walls with a height and width of 10 cm: the inner wall

with a outer radius of 9.49 m and the outer wall with an inner radius of 13.49 m. A world

file was generated to include this mesh and the representative challenge vehicle model

located in the turning circle with its CG at a position offset by CG to rear axle x-

dimension (1.265 m), and one-half the sum of the rear track width and section width

(0.882 m).

When controlling the model with the playerv utility using the packaged

controller, the author noted an unexpected “flattening” of the path of travel when the

steering angle was at a maximum at full right extent. The steering angle was selected

based on the representative challenge vehicle turning circle.

Problems encountered during development of the improved controller are

documented by Appendix G.

- 46 -

VI.A. Independent steering wheel angle

The author analyzed the packaged steering controller and determined that setting

the angle of both steering wheels to the same angle had the effect of “dragging” the rear

of the model around at certain points on the path of travel, and proposed the observed

behavior was due to the effect of friction caused by the angle of the outer steering wheel.

Because the packaged steering controller set the angle of both steering wheels to the same

angle, the outer steering wheel in any turn was exerting more force toward the center of

the turning circle than it should have been exerting.

After a period of time during which the model would travel in a circular path as

expected, the effect of friction would cause the front wheels to drag the front end of the

model around using the inner rear wheel as a pivot. The motion of the model would

return to normal for a while, then the effect of friction would cause the front wheels to

drag the front end of the model around using the inner rear wheel again. This would

continue as long as the model was traveling in a circle.

The author improved the steering controller to determine and set the angle of the

steering wheels independently. This conforms to Ackermann steering geometry. The

steering angles and angular velocities of the inside and outside wheels are calculated

using the steering angle and angular velocity at model CG, track width, and wheelbase.

As a result, when the steering angle is not equal to zero:

• The steering angle of the inside wheel (i.e., the wheel on the inside of the turn) is

greater than the steering angle at model CG.

• The steering angle of the outside wheel is less than the steering angle at model

- 47 -

CG.

VI.B. Odometry

Because several of the simulation targets require the ability to determine the

position of the model in relation to detected obstacles, the author implemented odometry

in the improved controller in a manner similar to the implementation in the packaged

position controller for a robot using differential drive.

The position of the model is determined based on the distance traveled by the rear

wheels, which is calculated using the angular velocity and radius of the rear wheels. One

weakness of this method is that the reported position of the model is independent of the

actual position of the model when the wheels are not touching the ground because the

controller continues to calculate the distance traveled by the rear wheels.

However, if this is a problem in simulation it may also have been a problem

during the 2004 and 2005 GCE. Thirteen of 25 teams in 2004 and seven of 23 teams in

2005 referred to the use of encoders as navigation sensors on each wheel, rear wheels

only, or the drive axle to provide instantaneous velocity.

In addition, the error in reported position of the model increases as the distance

traveled from the initial position of the model increases due to the accumulation of errors

in calculation over thousands of simulation cycles. Because most of the tests performed

by the author were over relatively short distances, the author did not attempt to resolve

this problem.

The author attempted to use the reported position to determine the exact location

at which rollover occurred to be able to analyze the path of the model until the onset of

- 48 -

rollover. However, attempts to determine the onset of rollover were unsuccessful. See

paragraph VII.E.

VI.C. Additional features of the improved controller

In addition to the parameters described above, the author also implemented

several features to increase the usability and realism of the improved controller:

• Gas pedal

The author implemented a “gas pedal” by using the cmdVelocity.pos.x

value returned by improved controller function GetPositionCmd to scale the

maximum constant acceleration calculated by the controller. The maximum constant

acceleration was determined by values for the final velocity and time to reach the final

velocity. These values are read from the model XML file.

The cmdVelocity.pos.x value returned by function GetPositionCmd is

between -0.1 and 0.5, depending on how far the user drags the cursor to the left or right,

respectively. The minimum and maximum values were compiled into the playerv

utility and may be modified by making changes to function position2d_servo_vel

in file pv_dev_position2d.c. To minimize the number of changes required, the

author decided not to revise the playerv utility to modify the minimum and maximum

values but to use these values to scale acceleration via the improved controller.

To simulate a gas pedal, the author calculated forward velocity using a scaled

acceleration equal to constant maximum acceleration multiplied by a factor of

cmdVelocity.pos.x/0.5, and reverse velocity using a scaled acceleration equal to

constant maximum acceleration multiplied by a factor of cmdVelocity.pos.x/0.1.

- 49 -

As a result, dragging the cursor farther to the left or right from center is analogous to

depressing the gas pedal harder while in “Reverse” or “Drive”, respectively.

• Brake pedal

The author implemented a “brake pedal” by reducing the velocity by three times

the scaled acceleration calculated above when velocity was greater than zero. In practice,

this reduction in velocity would have to be fitted to the braking profile of the simulated

challenge vehicle.

• Elimination of redundant classes

The packaged controller used three classes to represent wheels: a base class

(“Wheel”), and two derived classes (“DriveWheel” and “FullWheel”). The member

variables and functions for these classes were very similar. The author collapsed the

three classes into a single class (“Wheel”) by defining an additional member variable:

type, which is assigned when the wheels are created by reading the type from the model

XML file. Three types are supported: DRIVE, STEER, and FULL.

• Revise the steering controller to increase use of parameters

The packaged controller used non-parameter private class member variables.

Most Gazebo classes use parameters in lieu of private class member variables. The

author revised the steering controller to make increased use of parameters for values used

by the controller to more closely conform to other Gazebo classes, but did not eliminate

the use of private class member variables to store values calculated from the parameters

in use.

- 50 -

VI.D. Parameters in use by the improved controller

In addition to the characteristics required to accurately model the representative

challenge vehicle, the author implemented the following parameters for the purposes of

evaluating the simulation targets:

• useSwaybars

When parameter useSwaybars is TRUE, the improved controller will attempt

to compensate for “up” and “down” forces in each joint in a manner similar to anti-sway

bars by applying a counter force to each joint. The counter force is calculated using

parameters swayForce and swayForceLimit. When FALSE, the controller does

not attempt to compensate.

• swayForce

When parameter useSwaybars is TRUE, parameter swayForce defines the

force used to determine the moment applied in each joint due to displacement of the joint.

The moment is the product of the force and the displacement.

• swayForceLimit

When parameter useSwaybars is TRUE, parameter swayForceLimit

defines the maximum moment used to compensate for “up” and “down” forces in each

joint. Forces which would result in moment greater than the sway force limit are not

applied to the joint.

• useConstantVelocityMode

The improved controller reads velocity commands from the playerv utility.

When parameter useConstantVelocityMode is TRUE, the controller will maintain

- 51 -

a constant velocity. When FALSE, the controller causes the model to coast to a stop.

• useConstantSteeringAngleMode

The improved controller reads steering commands from the playerv utility.

When parameter useConstantSteeringAngleMode is TRUE, the controller will

use parameter constantSteeringAngle to override the steering angle sent from the

playerv utility. Steering angle at model CG will equal parameter

constantSteeringAngle. When FALSE, the controller accepts steering

commands sent from the playerv utility.

• constantSteeringAngle

When parameter useConstantSteeringAngle is TRUE, parameter

constantSteeringAngle defines the steering angle at model CG and overrides

steering commands from the playerv utility.

• useSafeVelocity

When parameter useSafeVelocity is TRUE, limits the maximum velocity at

model CG to the maximum allowed by representative challenge vehicle and course

geometry. When FALSE, the maximum velocity at model CG is equal to the final

velocity. The final velocity is set using the <velocityFinal> declaration and, with

the <velocityFinalTime> declaration, is used to calculate acceleration for the

model, which is a constant.

• velocityOffset

When parameter useSafeVelocity is TRUE, parameter velocityOffset

defines the amount by which to increase the calculated maximum velocity at model CG.

- 52 -

• useTurnRadius

When parameter useTurnRadius is TRUE, the calculation of the maximum

steering angle, and maximum velocity and angular velocity at model CG, is based on

parameter turnRadius. When FALSE, the calculation is based on representative

challenge vehicle geometry and characteristics, specifically turning circle, track width,

and section width.

• turnRadius

When parameter useTurnRadius is TRUE, parameter turnRadius defines

the turn radius used to calculate the maximum steering angle, and maximum velocity and

angular velocity at model CG.

VI.E. Validation of the improved controller

Output from the steering controller was logged to confirm the values calculated

conformed to Ackermann steering geometry and other design decisions implemented by

the author.

The author used parameters useConstantSteeringAngleMode and

useSafeVelocity to limit the motion of the model to travel in a circle based on the

representative challenge vehicle turning circle of 11.491 m at a constant steering angle of

-0.376337 radians (i.e., a right turn at a constant steering angle of 21.56 degrees),

launched Gazebo, and let the simulation run for 60 s. The author validated the controller

by confirming:

• The radius used to calculate maximum velocity, maximum angular velocity, and

maximum steering angle at model CG (“calculated radius”) was 6.63 m,

- 53 -

corresponding to one-half the sum of the model's turning circle, rear track width,

and section width.

• The maximum velocity of the model was 8.72 m/s, corresponding to the

calculated radius of 6.63 m and SSF of 1.17.

• The maximum angular velocity at model CG was 1.316 radians/s, corresponding

to a maximum velocity of 8.72 m/s and circumference of 41.6 m.

• The maximum steering angle at model CG was 0.376337 radians, corresponding

to a wheelbase of 2.619 m and calculated radius of 6.63 m.

The model completed twelve complete rotations in 60 s, with an average velocity

of 8.71 m/s. Because the model accelerated from a complete stop, the average velocity

was less than the maximum velocity at model CG. At a controller update rate of 50 Hz,

the radius of the turning circle of the model (“reported radius”) was 6.52 m. The error in

the reported radius was -0.11 m (approximately 1.7 percent of the calculated radius). The

author proposes this error may be due to the centripetal force applied by the steering

wheels toward the center of the turning circle. No significant eccentricity was noted.

The author concluded the improved controller used representative challenge

vehicle and course geometry, such as turning circle and SSF, to correctly calculate

internal variables used to limit the maximum velocity and steering angle at left or right

extent.

For example, to evaluate the rollover condition, in particular 2004 GCE course

segment 2570-2571-2572, it was necessary to verify the improved controller calculated

- 54 -

maximum angular velocity at model CG correctly using SSF and turning circle. Using a

SSF of 1.17 and turning circle of 11.491 m, the author confirmed the controller calculated

the correct maximum angular velocity of 22.0632 rad/s for all wheels when steering angle

was equal to zero, corresponding to a velocity of 18.2 mph, which is consistent with the

Team 2005-06 challenge vehicle.

Problems encountered while validating the improved controller are documented in

Appendix G.

The author then used parameter velocityOffset to determine how much the

maximum velocity could be increased before rollover occurred. Table I summarizes the

results:

- 55 -

Table I. Approximate simulation time at which
rollover occurs at velocity offset.

Velocity offset
(m/s)

Simulation time
(s)

0.10 -

0.20 -

0.22 -

0.24 -

0.25 48

0.26 19

0.27 14

0.28 12

0.29 10

0.30 9

0.31 8

0.32 6

0.33 5

0.34 4

0.35 3

0.36 2

With a velocity offset of 0.36 m/s, rollover occurred almost immediately after the

model accelerated to maximum velocity, so the author discontinued the trials, concluding

that increasing the velocity offset would not result in a reduction in the simulation time at

which rollover occurs since constant acceleration was calculated based on parameters in

use by the controller.

- 56 -

The simulation was then allowed to run for 300 s simulation time with a velocity

offset of 0.24 m/s with no rollover event.

The information summarized by Table I is visually represented by Figure 1:

Figure 1. Approximate simulation time at which rollover occurs versus velocity

offset.

The relationship between the simulation time at which rollover occurs and

velocity offset suggests a power regression, but the data collected by the author is

approximate. The author used the playerv utility to control the velocity of the model.

As a result, there was a delay between starting the simulation and starting to accelerate

the model of approximately 1.5 seconds.

Based on the results, the author concluded merely exceeding the maximum safe

velocity may not result in rollover. The actual onset of rollover may be delayed, provided

the model recovers before rollover occurs. As a result, the author proposed that the

model could safely exceed the maximum velocity at model CG without rollover for a

- 57 -

0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34 0.35 0.36
0

50

100

150

200

250

300

Velocity offset, m/s

Si
m

ul
at

io
n

tim
e,

 s

limited time without adverse consequences, and that the time by which the model could

safely exceed the maximum velocity at model CG without rollover would decrease as the

velocity offset increased.

The author calculated the effective SSF of the model using the maximum velocity

at which the model was able to successfully complete the test (9.08 m/s). The effective

SSF of the model was 1.27 corresponding to a turn radius of 6.63 m, which well exceeds

the representative challenge vehicle SSF of 1.17.

In general, suspension and tire effects contribute to a reduction of up to ten

percent in SSF, meaning the increase over the effective SSF of the representative

challenge vehicle of 1.07 was approximately 20 percent.

Because one of the purposes of high-fidelity simulation is to model real-world

interaction which it may not be possible to evaluate in the real world, the author is not

confident this is not a valid result:

• The model is an unrealistically rigid body.

A rigid-body model cannot predict time-dependent details of rollover such as

those observed above.

• The accumulation of error in joints over time may result in bodies drifting away

from their expected positions.

The ODE Manual states: “There is a mechanism to reduce joint error: during each

simulation step each joint applies a special force to bring its bodies back into correct

alignment. This force is controlled by the error reduction parameter (ERP), which has a

value between 0 and 1.” and “The ERP specifies what proportion of the joint error will be

- 58 -

fixed during the next simulation step.” ([44]).

Setting the ERP equal to 1.0 was not recommended. Setting the ERP to a value

between 0.1 and 0.8 was recommended (0.2 is the default). An ERP of 0.8, the maximum

recommended, was selected. This value conforms to the ERP in use in several packaged

world files and models, and specifically world file “simplecar.world” which was used to

evaluate the packaged steering controller.

• The representative challenge vehicle model does not model suspension and tire

effects.

ODE provides a mechanism to control the “springyness” of joints, and which

could be used to model challenge vehicle suspension and tire effects: Constraint Force

Mixing (CFM). Setting the CFM to be less than zero was not recommended. The ODE

Manual states: “If CFM is set to zero, the constraint will be hard. If CFM is set to a

positive value, it will be possible to violate the constraint by 'pushing on it' (for example,

for contact constraints by forcing the two contacting objects together). In other words the

constraint will be soft, and the softness will increase as CFM increases.” ([44]).

A CFM of 0.00001 (10-5) was selected. This value conforms to the CFM in use in

several packaged world files and models, and specifically world file “simplecar.world”

which was used to evaluate the packaged steering controller.

• An effective SSF of 1.41 was calculated during evaluation of 2004 GCE course

segment 2570-2571-2572.

This value exceeds the effective SSF calculated during validation of the improved

controller. The author concluded the effective SSF of the model was independent of

- 59 -

model geometry, but may be a function of force due to lateral acceleration:

F=ma=mv2

r
, therefore a= v2

r

The rollover condition is: v2

rg
SSF

Force due to lateral acceleration, a, is balanced by centripetal force (the sum of

forces exerted by the tires toward the center of the turning circle) at the tire-surface

interface. ODE calculates tangential forces at the tire-surface interface (“contact point”)

using a “friction pyramid” approximation of the Coulomb friction model.

As a result, the author proposed selection of ERP and CFM in combination with

friction approximation may result in an effective SSF of the model which exceeds the

effective SSF of the representative challenge vehicle, and concluded additional testing in

simulation and using the representative challenge vehicle would be required to effectively

“tune” the model.

The model was not revised to have an SSF of 1.17 or an effective SSF of 1.07

because it would have required altering the geometry of the model, which was based on

the representative challenge vehicle.

- 60 -

CHAPTER VII. EVALUATION OF 2004 GCE COURSE SEGMENT 2570-2571-2572

VII.A. Configuration of the simulation environment

Two meshes representative of 2004 GCE course segment 2570-2571-2572 were

created using TurboCAD Mac Deluxe in accordance with paragraph V.D. Both the first

and second mesh were dimensionally accurate, having the length of adjacent segments

2570-2571 (137.1 m) and 2571-2572 (143.2 m), with an angle of -47.865 degrees

between them (i.e., a 47.865 degree-turn to the right). Both meshes represented the

course boundaries as walls ten cm high and ten cm wide at a distance equal to the lateral

boundary offset (3.962 m) from the centerline of the course. However, the radius of the

outer wall at the intersection was different for each mesh.

DARPA stated ([1]):

The Lateral Boundary Offset (specified in feet) is the

distance in any direction from the Track Line

(including a radius at the end points) that defines

the corridor in which Challenge Vehicles are permitted

to travel.

DARPA's instructions were not as specific during the 2004 GCE as they were

during the 2005 GCE. As a result, the author does not know what DARPA intended by

“including a radius at the end points”. However, DARPA provided specific examples of

course geometry prior to the 2005 GCE ([2]).

As a result, the first mesh included an outer radius of 7.924 m (twice the lateral

boundary offset) tangent to the outer wall at the intersection of the two adjacent course

segments. The adjacent course segments were otherwise straight. The first mesh was

- 61 -

representative of the actual course boundaries established by DARPA in 2005.

The second mesh included an outer radius of 46.1 m tangent to the outer wall at

the intersection of the two adjacent course segments. This was not representative of the

2004 GCE course, but provided a way to visually evaluate how far from the centerline

during a turn of constant radius of 46.1 m the model would travel.

A world file was generated to contain the model and either of the two meshes.

VII.B. Simulation procedure

The following procedure was developed to evaluate the simulation target:

1. Set the following parameters:

useSwaybars = FALSE

useConstantVelocityMode = TRUE

useConstantSteeringAngle = FALSE

useSafeVelocity = FALSE

useTurnRadius = TRUE

turnRadius = 46.1

2. Run the simulation. Accelerate the model to maximum velocity and

attempt to negotiate the turn successfully.

3. If rollover occurs, set parameter useSafeVelocity = TRUE and

confirm the model is able to make the turn at the maximum safe velocity.

4. If the model is able to make the turn at the maximum safe velocity, adjust

the maximum velocity at model CG by increasing the velocity offset by

0.5 m/s until rollover occurs.

5. When the model is no longer able to make the turn at the adjusted

- 62 -

maximum velocity, revise the world file to relocate the model to maximize

the potential radius of the turn.

6. Report the results.

With parameter useSafeVelocity set to FALSE, the maximum velocity at

model CG was 26.822 m/s. The corresponding maximum angular velocity at model CG

was 0.494 radians/s and maximum steering angle at model CG was 0.0557 radians.

With parameter useSafeVelocity set to TRUE, the maximum velocity at

model CG was 23.218 m/s. The corresponding maximum angular velocity at model CG

and maximum steering angle at model CG were unchanged. These values are determined

by representative challenge vehicle and course geometry.

The author then started Gazebo, started Player, started the playerv utility, and

observed the model as it attempted to successfully negotiate turn 2570-2571-2572 using

the first mesh generated. The second mesh generated was used to determine how closely

the model followed the centerline of a radius 46.1 m curve, with good results.

VII.C. Results

Multiple runs of nine trials in total were completed. The results are summarized

below.

• Trial 1

The model was accelerated to the maximum speed allowed by the RDDF of

60.0 mph (26.822 m/s). When the steering wheel was not released during the turn to

allow the model to recover, the model rolled over. When the steering wheel was released

during the turn to allow the model to recover, the model exceeded the outer lateral

- 63 -

boundary offset and left the course.

• Trial 2

Parameter useSafeVelocity was set to TRUE. The model successfully

completed the turn at the maximum safe velocity of 23.218 m/s without rolling over or

leaving the course.

• Trials 3 through 5

The maximum velocity at model CG was changed by increasing the velocity

offset by 0.5 m/s in each trial. The model successfully completed the turn at velocities of

23.718 m/s (+0.5 m/s), 24.218 m/s (+1.0 m/s), and 24.718 m/s (+1.5 m/s).

• Trial 6

The maximum velocity at model CG was changed by increasing the velocity

offset by 0.5 m/s to 2.0 m/s. The model successfully completed the turn at a velocity of

25.218 m/s, but began to tip during the turn.

• Trial 7

The maximum velocity at model CG was changed to 25.718 m/s by increasing the

velocity offset by 0.5 m/s to 2.5 m/s. When the steering wheel was not released during

the turn to allow the model to recover, the model rolled over. When the steering wheel

was released during the turn to allow the model to recover, the model exceeded the outer

lateral boundary offset and left the course.

• Trial 8

The maximum velocity at model CG was not changed. The world file was

revised to relocate model CG 3.072 m to the left of its original position. This is the

- 64 -

maximum lateral displacement possible without violating the outer lateral boundary

offset in segment 2570-2571-2572, increasing the potential radius to 49.172 m. The

model rolled over during the turn before the steering wheel was released to allow the

model to recover.

• Trial 9

The model XML file was revised to increase the radius used to calculate

maximum velocity, maximum angular velocity, and maximum steering angle to

49.172 m, corresponding to the maximum lateral displacement of the model. As a result,

the maximum velocity increased to 26.465 m/s, the maximum angular velocity decreased

to 0.479 radians/s, and the maximum steering angle at model CG decreased to 0.523

radians. The model rolled over during the turn before the steering wheel was released to

allow the model to recover.

VII.D. Conclusions

The author compared the results of the model entering segment 2570-2571-2572

with an allowed speed exceeding 48.0 mph to the results after configuring the controller

to limit speed to 48.0 mph. A speed of 48.0 mph corresponds to the course segment

2570-2571-2572 maximum allowed turn radius of 46.1 m for a challenge vehicle with a

SSF of 1.02, the worst case scenario. The maximum speed allowed by the RDDF of 60.0

mph corresponded to a turn radius of 72 m. Because the maximum allowed turn radius

exceeded the turn radius corresponding to the maximum speed allowed by the RDDF, this

turn represented a rollover risk if an arbitrary challenge vehicle entered this turn at a

speed exceeding 48.0 mph.

- 65 -

The author concluded the representative challenge vehicle would not have been

able to successfully complete the turn in segment 2570-2571-2572 at the maximum speed

allowed by the RDDF and would have either rolled over or left the course. However, the

author calculated the effective SSF of the model using the velocity at which the model

was able to successfully complete the turn (25.218 m/s). An effective SSF of 1.41 was

calculated using a turn radius of 46.1 m, which well exceeds the representative challenge

vehicle SSF of 1.17 or effective SSF of 1.07. The author proposed selection of ERP and

CFM in combination with friction approximation may result in an effective SSF of the

model which exceeds the effective SSF of the representative challenge vehicle. See

paragraph VI.E.

VII.E. Determination of the onset of rollover

To more reliably determine the onset of rollover, the author attempted to

implement a rollover flag using functions ODEBody::GetEulerRate,

ODEBody::GetLinearVel, and ODEBody::GetAngularVel without success.

Although these functions returned information which may be interpreted as rollover, the

author was unable to distinguish the onset of rollover from motion prior to or after the

onset of rollover.

The author then attempted to use function ODEJoint::GetFeedback to

return an ODE dJointFeedback structure containing the values of forces applied to

each body of the wheel joints to determine when the forces for the inside wheels were

zero. Use of this function caused a segmentation fault. The author did not attempt to

resolve the problem.

- 66 -

CHAPTER VIII. EVALUATION OF THE USE OF LIDAR

VIII.A. Configuration of the simulation environment

A world file was generated containing the first mesh created during evaluation of

2004 GCE course segment 2570-2571-2572, which included an outer radius of 7.924 m

(twice the lateral boundary offset) tangent to the outer wall at the intersection of the two

adjacent course segments. The first mesh was representative of the actual course

boundaries established by DARPA in 2005.

A tower obstacle was located so the tower was at the center of a circle with radius

2.0 m tangent to the inner wall at the intersection of 2004 GCE course segments

2570-2571 and 2571-2572. This is representative of towers encountered during the 2005

GCE (see Figures 9 and 10 for examples). The tower model file was revised to include a

<laserFiducialId> declaration of “1” and <laserRetro> declaration of “0.5”.

The world file was revised to attach a SICK LMS 200 model to the representative

challenge vehicle model. The world file was revised to relocate the SICK LMS 200

model through the trials which followed, and the SICK LMS 200 model file was revised

to adjust the field-of-view and angular resolution through the trials which followed, as

documented below.

The Player configuration file was revised to include a driver for the laser device

and to add the laser device to the writelog driver used to log output.

VIII.A.1. Selection of scanning frequency

The scanning frequency of SICK LMS 200 or 291 LIDAR sensors is 37.5 Hz with

an angular resolution of 0.5º and 75 Hz with an angular resolution of 1º. As documented

- 67 -

below, angular resolutions of 0.5º and 1º were used when evaluating the revised

simulation target. However, the author was unable to determine the scanning frequency

in use by teams participating in the 2004 or 2005 GCE. Team 2005-18 stated: “[SICK

LMS-221-30206] LADARs have a maximum range of 80 meters and a scanning rate of

75 Hz.” ([26], p. 10). Three other teams referred indirectly to a SICK LIDAR sensor

scanning frequency of 75 Hz: Teams 2005-05, 2005-08, and 2005-19.

However, an informal review of technical proposals for teams participating in the

2007 Urban Challenge indicate a scanning frequency of 10 Hz was not uncommon. As a

result, the author concluded, although the maximum scanning frequency of a LIDAR

sensor was 75 Hz, it was likely that LIDAR sensors in use by teams participating in the

2004 and 2005 GCE were operated at a reduced scanning frequency, and that a scanning

frequency of 20 Hz was reasonable, and revised the <updateRate> declaration of the

representative challenge vehicle model XML file steering controller and SICK LMS 200

model file laser controller to change the update rate of both controllers to 20 Hz. An

update rate of 10 Hz was not considered due to problems encountered with simulation

fidelity when validating the steering controller.

VIII.A.2. Selection of parameters rayCount and rangeCount

As described via paragraph V.A., the author reviewed files Sensor.cc,

Controller.cc, RaySensor.cc, and MultiRayShape.cc (and corresponding

header files) to determine valid parameters used by the simulated SICK LMS 200 LIDAR

sensor. Although the author was able to generate a list of potential parameters, he was

unable to determine the effect of some parameters, specifically rayCount and

- 68 -

rangeCount, without review of documentation for a much earlier version of Gazebo

(version 0.5).

However, based on a review of documentation for Gazebo 0.5, parameters

rayCount and rangeCount were set equal to the same value through the trials that

followed.

VIII.A.3. Selection of parameter maxRange

Parameter maxRange was set to “30”, the typical range with ten percent

reflectivity for SICK LMS 291 LIDAR sensors.

VIII.B. Revision of the simulation target

The original simulation target was: “Use Player and Gazebo to evaluate the use of

LIDAR, in particular the quality of the point map created by SICK LMS 200 and 291

LIDAR sensors, and increase in the number of SICK LMS 291 LIDAR sensors”. See

paragraph IV.E.

However, while configuring the simulation the author determined that there would

be no difference between the quality of the point map generated by SICK LMS 200 and

291 LIDAR sensors in simulation based on the results of several trial runs. Both sensors

have a maximum possible scanning angle of 180º and angular resolution of 0.25º, 0.5º, or

1.0º, and both sensors have identical response times and scanning frequencies ([45]).

Gazebo uses a generic “ray” sensor to simulate a LIDAR sensor. As a result, the

point map generated by SICK LMS 200 LIDAR sensors would be virtually identical to

the point map generated by SICK LMS 291 LIDAR sensors with the same parameters in

simulation.

- 69 -

SICK LMS 200 LIDAR sensors have a typical range with ten percent reflectivity

of 10 m and SICK LMS 291 LIDAR sensors have a typical range with ten percent

reflectivity of 30 m ([45]). The author determined the difference in the quality of the

point map generated by SICK LMS 200 or 291 LIDAR sensors at ranges typical of the

two sensors in simulation was self-evident from review of logged data based on the

results of several trial runs.

SICK LMS 200 LIDAR sensors do not have one feature SICK LMS 291 LIDAR

sensors have: fog correction ([45]). Gazebo makes use of OGRE. As a result, a Gazebo

world file may be configured to include fog through use of the <rendering>

declaration. However, the author did not have data with which to correlate the accuracy

of the range returns from a simulated SICK LMS 200 or 291 LIDAR sensor through fog.

Although SICK provided reflectivity in fog data ([46]), the author was unable to correlate

it with intensity data returned by Gazebo, which was one of two values “0” and “1”, with

a value of “0” being typical.

Team 2005-06 stated: “Rather than pointing the LADAR devices at the ground

horizontally, we mounted the LADAR devices vertically. We chose to align them

vertically because it made obstacle detection much easier. In the simplest case, by

analyzing the measurement data beam by beam in angular order, obstacles were easy to

locate as either clusters of similar distance or gaps in distance.” ([47], p. 513). No other

environment sensors were in use by Team 2005-06. However, Team 2005-06

successfully completed the 2005 GCE.

This was atypical. Several other teams stated vertically-aligned LIDAR sensors

- 70 -

were in use as terrain analysis or ground profile estimation sensors, but no other team

relied on vertically-aligned LIDAR sensors as the only obstacle and path detection

sensors. As a result, the simulation target was revised: “Use Player and Gazebo to

evaluate the use of a single SICK LMS 291 LIDAR sensor in various configurations in

simulation to determine if the vertical LIDAR configuration in use by Team 2005-06

provided a competitive advantage over the horizontal LIDAR configurations in use by the

majority of teams, and if an alternate configuration combining aspects of a horizontal and

vertical configurations would be more effective”.

VIII.C. Simulation procedure

The author then started Gazebo, started Player, started the playerv utility,

accelerated the model past the tower obstacle, and analyzed log output to evaluate the

quality of the point map generated for various LIDAR configurations. Specifically, the

author counted the number of range returns, and recorded the maximum range when the

obstacle was first detected and minimum range when the obstacle was last detected.

VIII.D. Results

Three runs of the first trial were completed. The author determined the results

from each run were virtually identical, with almost no variation (typically less than the

range resolution of the simulated SICK LMS 291 LIDAR sensor) in range reported from

one run to the next and no variation in the number of range returns. The author

concluded it was unnecessary to complete multiple runs for each trial.

Six trials in total were completed. The results are summarized in Table II below.

As an objective measure of the quality of each configuration, the ratio of the number of

- 71 -

returns to the number of rays (“Quality”) was calculated.

• Trial 1

The SICK LMS 291 LIDAR model was located at the front left corner of the roof

of the representative challenge vehicle model with a rotation of -90º around the x-axis

and -20º around the z-axis so the beam of the sensor swept a vertical plane at an angle of

20º clockwise across the path of travel of the vehicle. See Figure 11.

The location of the SICK LMS 291 LIDAR model was selected so the beam of

the sensor crossed the path of travel of the representative challenge vehicle model to

ensure the model would have the ability to detect obstacles directly in front of the model.

An angle of -20º was selected based on visual analysis which indicated obstacles

near the inner lateral boundary offset were within the 30-m detection range. Increasing

this angle by three degrees to -17º resulted in an inability to detect obstacles within the

course boundaries. Decreasing this angle by three degrees to -23º reduced the ability of

the sensor to detect obstacles at the maximum range possible. An angle of -20º was

selected to ensure obstacle detection at a range slightly exceeding the inner lateral

boundary offset.

Parameter minAngle was set to “-10”, parameter maxAngle was set to “25”,

and parameters rayCount and rangeCount were set to “36”. Parameters

minAngle and maxAngle were selected to limit the beam of the sensor to an area just

clearing the hood of the model at left extent to slightly greater than horizontal at right

extent. Parameters rayCount and rangeCount were selected based on an angular

resolution of 1º.

- 72 -

• Trial 2

Parameters rayCount and rangeCount were set to “71”. Parameters

rayCount and rangeCount were selected based on an angular resolution of 0.5º.

The simulation configuration was otherwise identical to Trial 1.

• Trial 3

The SICK LMS 291 LIDAR model was relocated at the front center of the roof of

the representative challenge vehicle model with a rotation of 5º around the y-axis so the

beam of the sensor swept a horizontal plane at a down angle of 5º across the path of

travel of the model. See Figures 12 and 13.

An angle of 5º was selected based on visual analysis which indicated the beam of

the sensor completely crossed the path of travel at the maximum range possible.

Increasing this value to 6º resulted in a reduced ability to detect obstacles near the ground

because the beam did not intersect the ground within 30 m, which was the maximum

range of the simulated SICK LMS 291 LIDAR sensor. Decreasing this value to 4º

reduced the ability of the sensor to detect obstacles near the ground plane at the

maximum range possible. See Figure 14.

Geometric analysis confirms this. At a height of 2.142 m and angle of 4º, the

beam intersects the ground at a range of 30.6 m, exceeding the typical range with ten

percent reflectivity for a SICK LMS 291 LIDAR sensor. At a height of 2.142 m and

angle of 6º, the beam intersects the ground at a range of 20.4 m. An angle of 5º was

selected to ensure obstacle detection at a range of 24.5 m, the maximum range at which

the sensor completely crossed the path of travel.

- 73 -

Parameter minAngle was set to “-90”, parameter maxAngle was set to “90”,

and parameters rayCount and rangeCount were set to “181”. Parameters

minAngle and maxAngle were selected based on the maximum scanning angle of

SICK LMS 291 LIDAR sensors ([45]). Parameters rayCount and rangeCount were

selected based on an angular resolution of 1º.

• Trial 4

Parameter minAngle was set to “-45”, parameter maxAngle was set to “45”,

and parameters rayCount and rangeCount were set to “91”. Parameters

rayCount and rangeCount were selected based on an angular resolution of 1º. The

simulation configuration was otherwise identical to Trial 3.

• Trial 5

Parameter minAngle was set to “-30”, parameter maxAngle was set to “30”,

and parameters rayCount and rangeCount were set to “61”. Parameters

minAngle and maxAngle were selected to limit the beam of the sensor to an area

including the outer wall and inner wall used to mark the lateral boundary offset.

Parameters rayCount and rangeCount were selected based on an angular resolution

of 1º. The simulation configuration was otherwise identical to Trial 3.

• Trial 6

The SICK LMS 291 LIDAR model was relocated at the front left corner of the

roof of the representative challenge vehicle model with a rotation of -20º around the x-

axis, 2º around the y-axis, and -10º around the z-axis so the beam of the sensor swept a

diagonal plane across the path of travel of the model. These values were determined

- 74 -

experimentally by making changes to the world file, loading the simulation, and

observing the result. See Figures 15 and 16.

Parameter minAngle was set to “-10”, parameter maxAngle was set to “45”,

and parameters rayCount and rangeCount were set to “56”. Parameters

minAngle and maxAngle were selected to limit the beam of the sensor to an area

including the outer wall used to mark the lateral boundary offset to slightly greater than

horizontal at right extent. Parameters rayCount and rangeCount were selected

based on an angular resolution of 1º.

Table II. Results of the evaluation of the use of LIDAR.

Trial
number

Number of
range

returns

Number of
rays

Quality Maximum
rangea

(m)

Minimum
rangeb

(m)

1 33 36 0.917 20.5 14.6

2 65 71 0.915 20.5 14.6

3 150 181 0.829 24.0 4.1

4 104 91 1.143 24.0 6.1

5 88 61 1.443 24.0 8.3

6 19 56 0.339 29.6 17.6

Notes:

a Maximum range when the tower obstacle was first detected.

b Minimum range when the tower obstacle was last detected.

An immediate reduction in the ratio of simulation time to real time from

approximately 0.4 for the previous evaluation to 0.2 during this evaluation was observed.

Although Gazebo documentation stated: “Reducing the number of rays is a good way to

save CPU cycles (at the expense of simulation fidelity).”, the author did not find this to

- 75 -

be the case. Through the trials documented above, changing the number of rays had little

observable effect on the ratio of simulation time to real time. The author also observed

no effect when initially reducing the update rate of the steering and laser controllers from

50 Hz to 20 Hz. The author concluded it was possible some other factor resulted in the

reduction, such as frequent filesystem access caused by logging data.

VIII.E. Conclusions

With the vertical or diagonal configurations it was immediately obvious through

visual analysis alone that the ability to detect obstacles in the path of travel was

compromised, creating a “blind spot” or spots, and that the maximum range at which an

obstacle would be detected in the path of the representative challenge vehicle model was

greatly reduced. The data reflect this. Of the three configurations tested:

• The vertically-aligned LIDAR configurations produced fewer range returns than

every horizontally-aligned LIDAR configuration, even when the scan was

completed with twice the angular resolution. The diagonally-aligned LIDAR

configuration produced the fewest range returns of any of the three

configurations.

• The maximum range when the tower was first detected for the vertically-aligned

LIDAR configurations was the least. The maximum range for the diagonally-

aligned LIDAR configurations was the greatest. The horizontally-aligned LIDAR

configurations detected the tower near the maximum range possible, considering

the angle of the sensor was selected to ensure obstacle detection at the maximum

range at which the sensor completely crossed the path of travel.

- 76 -

• The minimum range when the tower was last detected was greatest for the

diagonally-aligned LIDAR configuration, and slightly less for the vertically-

aligned LIDAR configurations. The minimum range when the tower was last

detected was least for the horizontally-aligned LIDAR configurations.

• The quality of tested configurations was a maximum for Test 05. This test

represented a horizontally-aligned LIDAR sensor with a down angle of 5º, able to

detect obstacles with the area including the outer wall and inner wall used to mark

the lateral boundary offset, or the entire possible path of travel of the

representative challenge vehicle model. This configuration was the most popular

LIDAR configuration in use by teams which participated in the 2004 or 2005

GCE.

As a result, the author concluded Player and Gazebo could be used to evaluate

LIDAR sensor configurations successfully, allowing a team to very quickly reduce the

number of possible configurations to those which best utilize existing computing

resources, and to visualize the interaction of the challenge vehicle with the environment.

However, it is easy to misinterpret the results of this evaluation. Several teams

reported a greater number of LIDAR sensors were in use oriented so they intersected the

ground at different distances from the challenge vehicle, or in fixed horizontal or vertical

planes. For example:

• Four SICK LIDAR sensors were in use by Team 2005-18 which were pointed

“horizontally”, 3 m, 20 m, and 35 m away.

- 77 -

• Two “nearly horizontal” and three “vertically oriented” unknown SICK LIDAR

sensors were in use by Team 2005-05.

By using vertically-aligned LIDAR sensors, Team 2005-06 was able to gain a

competitive advantage over other teams, such as Team 2005-18, which reported multiple

LIDAR sensors were in use which intersected the ground at different distances from the

challenge vehicle. Vertically-aligned LIDAR sensors, by scanning a vertical plane,

returned range readings to the maximum effective range of the LIDAR sensors in a

horizontal plane despite the attitude of the vehicle, i.e., whether the vehicle was traveling

downhill or uphill.

In addition, by using an oscillating mount, Team 2005-06 was able to use two

vertically-aligned LIDAR sensors to detect obstacles directly in front of the vehicle and

eliminate the field-of-view limitations consistent with fixed-mount vertically-aligned

LIDAR sensors noted by Team 2005-05. In reference to the vertically-aligned LIDAR

sensors in use by the team, Team 2005-05 stated: “The disadvantage, of course, is that

since each ladar looks in only a single azimuthal direction, instantaneous azimuthal

coverage is poor and obstacles between the vertical ladar scan planes will be missed.”

([48], p. 6).

Team 2005-06 reported the maximum effective range for the unknown SICK

LIDAR sensors in use by the team was “approximately 40 to 50 m” ([47], p. 516). As a

result, Team 2005-06 was able to extend the maximum effective range of the LIDAR

sensors in use by the team to twice the maximum effective range reported by Teams

- 78 -

2005-13, 2005-14, and 2005-16.

By using an oscillating mount, Team 2005-06 was able to reduce the number of

sensors to the minimum necessary, while retaining some redundancy.

The author considers this a key distinguishing factor which differentiated Team

2005-06 from all other teams which participated in the 2004 QID or GCE or 2005 GCE,

and which contributed to Team 2005-06 successfully completing the 2005 GCE.

The author did not attempt to simulate the oscillating mount in use by Team

2005-06 due to time constraints, but concluded it would be possible to simulate an

oscillating mount using Player and Gazebo. The author identified “Experiment with

different LIDAR configurations” as a future research opportunity based on the results of

this evaluation, and proposes a greater number of fixed-mount, horizontally-aligned

LIDAR sensors may, in fact, provide a less dense point map than fewer oscillating-

mount, vertically- or diagonally-aligned LIDAR sensors. See paragraph XI.I.

- 79 -

CHAPTER IX. EVALUATION OF FIELD-OF-VIEW LIMITATIONS

IX.A. Configuration of the simulation environment

A world file containing the turning circle mesh created to validate the steering

controller (see Chapter VI.) was generated. A tower obstacle (see paragraph V.C.2.) was

located at a position 5.128 m to the right and 7.128 m to the rear of the representative

challenge vehicle model, ensuring the tower was in the path of travel of the model as the

model traveled around the turning circle.

With the exception of the 70-degree field-of-view of the Navtech DS2000

RADAR in use by Teams 2005-13 and 2005-1413, the Epsilon Lambda ELSC71-1A

RADAR (“ELSC71-1A”) has the widest field-of-view of any navigation RADAR in use

by teams participating in the 2004 or 2005 GCE. To simulate and visualize the field-of-

view limitations of the ELSC71-1A, the world file was revised to attach a SICK LMS

200 LIDAR model to the representative challenge vehicle model with field-of-view

characteristic of the ELSC71-1A. The ELSC71-1A has a field-of-view of +/- 20 degrees

in wide-scan mode. This corresponds to a maximum distance between the path of travel

in a constant-radius turn and the left- or right-limit of field-of-view of 0.400 m. The

SICK LMS 200 LIDAR model file was revised to limit the field-of-view to +/- 20

degrees.

The representative challenge vehicle model file was revised to set parameters

useConstantSteeringAngleMode to TRUE, constantSteeringAngle to

-0.3764, and useSafeVelocity to TRUE.

- 80 -

IX.B. Simulation procedure

The author started Gazebo, started Player, started the playerv utility, and

observed the model as it accelerated through the turning circle toward the tower.

IX.C. Results

See Figures 17, 18, and 19. As predicted, the field-of-view of the simulated

ELSC71-1A was not wide enough to detect the tower obstacle located 0.5 m from the

representative challenge vehicle path of travel. As a result, the obstacle was not detected,

virtually guaranteeing a collision.

IX.D. Conclusions

The author concluded Player and Gazebo could be used to effectively visualize

sensor field-of-view limitations successfully. This may have eliminated the use of

navigation RADAR as a primary obstacle detection sensor, reduced cost to the teams, and

enabled less experienced teams to more effectively visualize the interaction of their

challenge vehicle with the environment.

- 81 -

CHAPTER X. OVERALL CONCLUSIONS

In an attempt to determine what problems, exactly, were solved during the Grand

Challenge, the author identified key factors. Several key factors which could have been

evaluated through the use of simulation prior to the Grand Challenge were identified as

potential simulation targets. Although installation and use of Player and Gazebo

presented challenges, the author successfully evaluated three simulation targets using

Player and Gazebo.

Overall, the author concluded the use of simulation would have enabled teams to

effectively visualize the interaction of their challenge vehicles with the environment, and

quickly and easily prototype and evaluate ideas such as the oscillating sensor mount in

use by Team 2005-06.

During the evaluation of LIDAR configuration, the use of XML configuration

files by Player and Gazebo to configure the simulation greatly increased flexibility and

ease-of-use. The author was able to modify the simulation configuration quickly between

trials by changing one or two lines in a text file.

In addition, the use of simulation made the results reproducible, with a high

degree of fidelity. As a result, the author concluded attempted solutions to problems

encountered during this research could be confirmed to be effective in simulation by

eliminating variability in initial conditions.

The four teams that successfully completed the 2005 GCE completed the course

in 06:53:58 hours (Team 2005-16), 07:04:50 hours (Team 2005-14), 07:14:00 hours

(Team 2005-13), and 07:30:16 hours (Team 2005-06), although Teams 2005-13 and

- 82 -

2005-14 adopted a “dual speed” strategy and estimated completion of the 2005 GCE in

06:19:00 and 07:01:00 hours, respectively.

Teams 2005-13 and 2005-14 later stated ([21, p. 500]):

While the strategy was successful in that both robots

completed the challenge, it limited [the challenge

vehicle] below its ability and, in retrospect,

prevented it from winning the Grand Challenge.

Team 2005-13 did not complete the course in the projected time because of

undiagnosed engine problems ([21, p. 502]).

The author implemented an improved steering controller that limited the velocity

of the vehicle to the maximum allowed by vehicle and course geometry and was able to

demonstrate that a model using this controller would not be subject to rollover in 2004

GCE course segment 2570-2571-2572. The representative challenge vehicle and many

other challenge vehicles would have been at risk of rollover if entering 2004 GCE course

segment 2570-2571-2572 at the maximum velocity allowed by the 2004 GCE RDDF.

This was similar in concept to the method Team 2005-16 reported was in use by

the team during the 2005 GCE, and which the author considers a key distinguishing

factor. Team 2005-16 stated ([49], p. 10):

...[the challenge vehicle] always assumes an allowable

velocity according to pre-processed RDDF file, and it

slows down in curves so as to retain the ability to

avoid unexpected obstacles. The vehicle also adapts

its velocity to the roughness of terrain, and to the

- 83 -

nearness of obstacles. The specific transfer function

emulates human driving characteristics, and is learned

from data gathered through human driving.

To attain a suitable trajectory and associated maximum

velocity, the RDDF file is processed by a smoother.

The smoother adds additional via points [sic] and

ensures that the resulting trajectory possesses

relatively smooth curvature. The preprocessing then

also generates velocities so that while executing a

turn, the robot never exceeds a velocity that might

jeopardize the vehicle’s ability to avoid sudden

obstacles. This calculation is based on a physical

model of the actual vehicle.

However, the author concluded that by eliminating the risk of rollover, it was

possible for teams to complete the 2004 GCE course at the maximum speed allowed by

the RDDF, with the sole exception of 2004 GCE course segment 2570-2571-2572, in less

time than Team 2005-16 completed the 2005 GCE (6.90 hr), with no pre-planning or pre-

mapping required.

DARPA stated ([50]):

Course speeds that are between 26mph and 50 mph

(inclusive) are advisory and are provided for guidance

purposes.

- 84 -

As a result, the author concluded, due to the safety factor inherent in the design of

the 2004 and 2005 GCE courses, it would have been possible for a challenge vehicle to

have completed the course in less time than the ideal time by traveling at speeds higher

than the “advisory” speed limits allowed by the RDDF at no additional risk of rollover to

the vehicle.

Although the teams could not have known this before receiving the 2004 GCE

RDDF, they could have performed the analysis documented by the Technical Report

based on a model of their challenge vehicle dynamics. The author asserts this may have

altered the pre-mapping or path editing strategies in use, and might have provided a

competitive basis for the 2004 GCE similar to that of the 2005 GCE.

- 85 -

CHAPTER XI. FUTURE RESEARCH

XI.A. Use a sensor to train the controlling intelligence to interpret other sensors

Team 2005-16 used LIDAR sensors to train a single color camera to detect

obstacles at a range which exceeded the maximum effective range of LIDAR sensors14.

Team 2005-16 stated: “To extend the sensor range enough to allow safe driving at 35

mph, [the challenge vehicle] uses a color camera to find drivable surfaces at ranges

exceeding that of the laser analysis.” ([51], p. 672). However, this strategy could be

extended to other combinations of sensors in simulation. For example:

• GPS/INS/IMU output could be used to train the controlling intelligence to detect

“slippage” of steering position and odometry. DARPA stated an “independent

technical evaluation team identified the following technology from Grand

Challenge 2004 noteworthy”: “Sensor-based slippage detection (conceptual)”

([3], pp. 10 - 11)15.

• LIDAR sensors could be used to train RADAR sensors to see farther up the road,

increasing the maximum effective range of RADAR sensors, or providing a basis

for the development of more effective navigation RADAR.

• Position sensors could be used to develop algorithms to integrate incremental

distance measurements provided by sensors such as magnetic or optical encoders

on axles or the drive shaft, differential odometers, etc. more effectively.

This is similar to the strategy utilized by COTS components. For

example, Team 2005-06 stated: “[Team 2005-06] chose to use the RT3000 from

Oxford Technical Solutions to provide vehicle localization. ... The integrated INS

- 86 -

allows the RT3000 to survive GPS outages of up to 30 seconds with virtually no

performance degradation. Because the GPS and INS are integrated together, each

can compensate for problems with the other. For example, if the INS started to

drift laterally, the integrated GPS will automatically correct that drift.” ([53],

p. 9).

• Distance could be estimated by throttle position for unit time and slope, and

integrated over changes in terrain roughness, providing an alternative to dead-

reckoning.

In addition, this strategy could be extended to combinations of sensors which are

not obviously complementary. For example:

• Team 2004-07 described how the controlling intelligence used information such

as time of day, orientation, and lighting conditions to detect obstacles: “Since the

system will know the time of day, its orientation, and the lighting conditions, it

can employ a shape-from-shading and shape-from-shadow system to determine

the approximate position and dimensions of obstacles like large rocks or craters.”

([54], p. 5). However, there is no reason the controlling intelligence would not be

able to determine the time of day, orientation, or lighting conditions using the

approximate position and dimensions of obstacles.

• Team 2004-09 stated: “Road boundaries and obstacles will be reliably detected

when the vehicle is bouncing over rough terrain and turns. We will use a rapid

shutter speed of 1/8000 sec. to minimize blurring. We will mount the camera and

- 87 -

other sensors on a platform designed to absorb shock. Inertial data will normalize

the image perpendicular to the ground when the vehicle is tilted one direction or

the other. In addition, when the vehicle is driving over uneven terrain, the

normalization process attempts to use information from previous images to locate

the horizon and road. Topographic information may also be used to locate the

horizon and road. Images that do not normalize to recognizable data can be

skipped because the frame rate of 30 frames/sec. is more than sufficient to allow

us to dispose of 'bad frames.' If the vehicle is tilted upward or downward so that

the camera is facing images of sky or ground, the autonomous control can use

pitch information to discard those frames.” ([55], p. 7).

This is similar in concept to Team 2005-16's later use of LIDAR sensors to

train a single color camera to detect obstacles at a range which exceeded the

maximum effective range of LIDAR sensors, but using shock, vehicle attitude

relative to the horizon, and accelerometer data to normalize data. In their

technical proposal, Team 2004-09 does not report their controlling intelligence

was trained to normalize the data, but learning to normalize visual processing data

is a potential task for a controlling intelligence.

XI.B. Emergence of unexpected behavior

In general human beings observe certain “rules of the road”: they navigate roads

with recognizable characteristics such as color, texture, lane markings, and signage which

establishes context and allows them to determine what is, and is not, a road; they travel

from point to point in lanes, the width of which varies depending on location; and they

- 88 -

must obey posted speed limits. However, human beings are not constrained by the

electronic equivalent of an overwhelming compulsion.

A truly autonomous vehicle would be able to evaluate its own objectives within

the constraints imposed on it by its programming, and it would violate some rules if

necessary to accomplish them, for example, by proceeding on a more direct course to its

destination if requested to travel a circuitous course similar to the 2005 GCE course

which crosses and overlaps itself in several areas. There is no evidence that the

emergence of unexpected behaviors was a goal or outcome of the Grand Challenge. If

the development of artificial intelligence is a goal of autonomous vehicle development,

the emergence of unexpected behaviors would be a measure of successful development.

XI.C. Development of novel sensor technologies

Several teams attempted to use low-cost photoelectric, ultrasonic, or short-range

RADAR sensors to provide useful information to the controlling intelligence. Because of

their limited utility in practice, these sensors were discounted by the author. However,

DARPA stated an “independent technical evaluation team identified the following

technology from Grand Challenge 2004 noteworthy”: “Extended range of low-cost,

ultrasonic sensors” and “Single-point laser rangefinder as a low-cost distance sensor”

([3], pp. 10 - 11).

Simulation might enable the identification and development of novel sensor

technologies, such as a SONAR sensor array that provides a 3D point map as accurate as

that provided by a LIDAR sensor, but using SONAR returns, the effective use of non-

scanning LIDAR sensors, or the development of a goniometer (direction-finding antenna)

- 89 -

for providing accurate position information. As a minimum, the use of simulation might

provide an environment in which the practical applications of such sensors could be

explored.

In addition, combined sensor strategies in use by teams which participated in the

2004 and 2005 GCE included the use of LIDAR in combination with high-quality

STEREO or RADAR, but alternate strategies were in use. Each strategy was specifically

tailored to a challenge vehicle. Simulation might increase the likelihood the generic

application of the combined sensor strategies in use by most teams would be adequately

explored and potential commercial applications identified.

XI.D. Use simulation to train the controlling intelligence to recover from a loss of

sensor data or other sensor failure

XI.D.1. Primary obstacle and path detection sensor

Several teams reported a single sensor was in use by the team as the primary

obstacle and path detection sensor:

• A proprietary stereo camera pair was in use by Team 2004-06.

• One SICK LMS 291-S05 was in use by Team 2004-12.

• One Epsilon Lambda ELSC71-1A was in use by Team 2004-21.

• A proprietary video system was in use by Team 2004-22.

• A proprietary LIDAR sensor was in use by Team 2005-03.

• A Point Grey Bumblebee stereo camera pair was in use by Team 2005-12.

Neither Team 2004-06, 2004-12, 2004-21, 2004-22, 2005-03, nor 2005-12

- 90 -

reported how the challenge vehicle controlling intelligence would respond to the loss of

the single primary obstacle and path detection sensor.

In general, teams which reported multiple obstacle and path detection sensors

were in use by the team also did not describe how the controlling intelligence would

respond to the loss of a sensor. Three teams which participated in the 2005 GCE reported

a sensor, type of sensor, or array of sensors was “redundant” in the sense that it provided

obstacle and path detection information in the event a sensor failed. The author considers

this to be functional redundancy. For example:

• Several obstacle and path detection sensors were in use by Team 2005-08,

including three Delphi Forewarn ACC3 RADAR. Team 2005-08 stated: “[The

Delphi Forewarn ACC3 RADAR] can act as a redundant sensor for the [challenge

vehicle].” ([56], p. 9).

• Although the author concluded ultrasonic sensors were not in use by Team

2005-15, Team 2005-15 stated: “...the ultrasound sensors act as additional

redundant sensors, which are less susceptible to dust or fog.” ([22], p. 9).

• Team 2005-20 stated: “Our goals were to... develop a sensor array that contains

redundancy for accuracy and reliability...” ([29], p. 2).

The author considers it likely teams selected multiple complementary obstacle

and path detection sensors by necessity and to have functional redundancy. For example,

Team 2005-10 stated: “There does not appear to be any one sensor that can 'do it all'.

Each sensor has its strengths and its weaknesses.” ([57], p. 7).

- 91 -

However few teams reported how the controlling intelligence would respond to

the loss of sensor data or other sensor failure, perhaps because DARPA did not explicitly

request teams provide such information. In contrast, DARPA explicitly requested teams

determine how the controlling intelligence would respond to “GPS outages”. As a result,

teams generally reported how the controlling intelligence would respond to the loss of

GPS data or GPS failure. See paragraph XI.D.2.

Several teams acknowledged the loss of sensor data or other sensor failure would

affect challenge vehicle performance. For example:

• Team 2004-01 stated: “Speed setting algorithms will take into consideration the

following and reduce speed appropriately: ... Sensor obstruction ... Sensor

disagreement, Data discontinuities or gaps ... Component failure” ([58], pp. 6 - 7).

• Team 2004-02 stated: “Component failure testing: Since [the challenge vehicle]

cannot operate without power, testing will be done to insure that the vehicle has

power the whole race. These tests will include cutting power to individual

sensors, computers, and support electrical units.” ([59], p. 13).

• Team 2005-04 stated: “These sensors are monitored for changes in their operating

state, validated using both dynamic and rule based tests, and finally fused using a

Kalman filter based approach to provide continuous position and orientation

information even [sic] the presence of individual sensor dropouts, reduced

accuracies, or complete failures.” ([13], p. 11).

• Team 2005-11 stated: “Hardware and software have been designed to minimize

the impact of temporary failed components. However, limited redundancy in

- 92 -

components means that permanent outages of sensors will have a detrimental

effect on [the challenge vehicle's] performance.” ([18], p. 7).

Finally, a few teams reported specific action to be taken to resolve a loss of sensor

data or other sensor failure. None of these teams described how the controlling

intelligence would respond to a loss of sensor data or other sensor failure:

• Team 2005-12 stated: “The emergency brake’s pneumatic system is setup such

that any failure of the [the challenge vehicle's] software or hardware will result in

an emergency brake application.” ([60], p. 3).

• Team 2005-20 stated: “A failure of any individual sensor results in no information

being broadcast from that specific sensor.” ([29], p. 7).

• Teams 2004-13, 2004-14, and 2005-15 reported an emphasis on the isolation of

hardware and software modules from each other so that a failure in one module

does not cause an overall failure, and Teams 2005-13, 2005-14, 2005-16, and

2005-19 reported an emphasis on restarting modular hardware and software

components.

Three teams reported a loss of obstacle and path detection sensors or other sensor

failure during the 2005 GCE: Teams 2005-14, 2005-15, and 2005-18. Team 2005-14

successfully completed the 2005 GCE. Team 2005-15 reported a loss of all LIDAR

sensor and internal state data due to a “USB hub” failure. Team 2005-18 reported a loss

of “midrange” LIDAR sensor data.

- 93 -

The author concluded the failures were preventable system integration failures.

Because Team 2005-14 had significant experience but neither Team 2005-15 nor 2005-18

had significant experience, the author proposes the use of simulation may have helped

“level the playing field”, by enabling teams without significant experience to learn how

to recover from a loss of sensor data or other sensor failure as well as an experienced

team and eliminate the causes of the preventable system integration failures which

resulted in their failure to complete the 2005 GCE.

XI.D.2. GPS sensor failure

GPS “drift” or “jumps” were consistently reported by teams which participated in

the 2004 QID or GCE or 2005 GCE. For example, Team 2005-05 stated: “Very often,

especially when the vehicle would drive near a wall or approach a tunnel, there would be

highly erratic jumps in the GPS measurements due to multipath reflections.” ([15],

p. 542).

In addition, GPS sensor failure was directly implicated in the failure of five teams

to complete the 2005 GCE: Teams 2005-02, 2005-09, 2005-15, 2005-18, and 2005-19.

For example, Team 2005-02 stated: “... it appears that the calculated GPS position drifted

by approximately 20 feet causing the vehicle to want to move to the right of the actual

road.”, which caused “a corresponding shift of the boundary smart sensor that eliminated

the actual sensed road as an option to the planner.” ([12], p. 621).

DARPA, via 2004 SQ 1.g.2 and 2005 SQ 2.2.1 requested teams describe how they

would handle “GPS outages”16. In general, teams described how the challenge vehicle

controlling intelligence would continue to determine position reliably in the absence of

- 94 -

GPS data. A few teams described test and evaluation to determine the effect of GPS

outage on the challenge vehicle controlling intelligence. For example:

• Team 2004-17 stated: “We have tested the ability of various materials to block

antenna reception. Flat sheets of aluminum and Lucite were unable to block the

GPS, as multi-path reflections off of the ground still reached the antenna.

Wrapping the antenna in aluminum foil cut off reception (we can selectively cut

off satellites and simulate GPS outages).” ([61], p. 12).

• Team 2005-06 stated: “Another extremely effective test involved manually

steering the vehicle off course at high speed and then switching back to

autonomous mode. This simulated a GPS jump, which can occur rather

frequently. After noticing that the navigation system abruptly turned the steering

wheel to counteract this jump, the navigation system was updated to eliminate this

abrupt movement.” ([53], p. 12).

In addition, the military deployment of autonomous ground vehicles will result in

the development of countermeasures to preclude their use17. For example:

• Strong magnetic fields may confuse magnetometers, causing the vehicle's

controlling intelligence to incorrectly interpret compass headings.

• The U. S. government's ability to control the accuracy of GPS position

information using “selective availability” is a strategic limitation on the use of

GPS. Although U. S. military ground vehicles would not likely be affected by

selective availability, an effective controlling intelligence should be able to

- 95 -

identify the problem if it occurs and adjust the weight of other sensors

appropriately or take corrective action to determine geolocation using some other

method, such as dead-reckoning. Alternate strategies, such as using beacons or

reflectors delivered by artillery, or aerial drones, to provide stable “known”

geolocation similar to survey markers may also be successful.

Although effective, the test method employed by Team 2005-06 represented a real

risk to the team challenge vehicle. Effective simulation may have allowed teams to

develop strategies to mitigate the effects of GPS drift or jumps and to gracefully recover

from a temporary or permanent loss of GPS sensor data by allowing a model to be driven

off course, then “switching back to autonomous mode” in a manner similar to that

reported by Team 2005-06, but without risk to the team challenge vehicle.

XI.E. Standardization and standard references

XI.E.1. Standard dictionary, acronyms, and abbreviations

Develop a standard dictionary of terms and their associated acronyms and

abbreviations for use in future research similar to the Grand Challenge to be maintained

as a set of user-defined dictionaries for various word-processing applications. The author

acknowledges that current word-processing software is limited in the amount of

customization that it provides. For example, OpenOffice.org Writer (version 3.0.1)

supports custom dictionaries, but does not yet provide a way to import or export custom

dictionaries. In addition, there is a finite limit to the number of words allowed in a

custom dictionary.

- 96 -

XI.E.2. Standard reference terrain

Develop a library of standard reference terrains using available sensors to gather

complete data using environment and geolocation sensors consistent with the state of the

art. For example, using a research platform with roof-mounted cameras, and LIDAR,

RADAR, and GPS sensors visit:

• the Pennsylvania Turnpike, to record mountainous terrain, including several

extremely long tunnels during which GPS reception will be lost

• the Mojave Desert, to record desert terrain, including the “negative obstacles”

typically encountered in desert terrain such as wadis

• the California coast on US-1 (the Pacific Coast Highway), to record coastal

highway, extending north through the Redwood National Forest

• Interstate 40, to record a long traversal across the United States with many

different reference terrains

While traversing reference terrain, record the precise geolocation on a continuous

basis. Use existing technologies to subtract vehicles and other obstructions from the

reference terrain as recorded by the environment sensors in use. Correlate GPS position

with the terrain in simulation. Use the LIDAR data to produce a “point map” of the

reference terrain, and map the return from camera sensors onto this point map as a

trimesh, providing simulated cameras with more realistic data.

This would make it possible to add vehicles and other obstructions as desired, or

to test the controlling intelligence in an environment completely devoid of risk to other

- 97 -

vehicles while still allowing it to perceive at the limit of available environment sensor

technology.

In addition to recording the standard reference terrain in different locations,

record the standard reference terrain at different times of the day and year. Although

there may be little difference to a LIDAR sensor from night to day, the difference to a

camera will be significant. In addition, there will be a significant difference between the

efficiency of a camera or LIDAR sensor pointed into the sun at sunrise, heading east, or

sunset, heading west, and at other times of the day. Terrain details may be obscured by

snow during the day, or brought into sharper contrast at night. All of this is useful

information to the controlling intelligence.

Simulation environments such as the Player Project could be modified to use

simulated reference terrain for real-time testing.

XI.E.3. Standard obstacle and position problems

Develop a library of standard obstacle and position problems (herein “standard

problems”), and acceptable responses based on human driving tests. These problems

should first be implemented in simulation to support the development of algorithms and

acceptable responses. Acceptable responses should then be verified during real world

testing. For example:

Every state has established a standardized program of driver education which

requires a minimum level of competency to be demonstrated by drivers prior to licensure.

For example, in Virginia, this program is called “The Driver Education Standards of

Learning and the Curriculum and Administrative Guide for Driver Education in Virginia”

- 98 -

(herein “Guide”) ([62]). The Guide describes a series of “Modules” presenting required

course content. Module 11 is titled “Laboratory Instruction – Behind-the-Wheel and In-

car Observation”. Module 11 describes a series of “Lessons”, “Basic Skills”, and

“Driving Procedures”, which ensure the driver has achieved a minimum level of

competency ([63]). Successful completion of the 2007 Urban Challenge was determined,

in part, by the challenge vehicle's controlling intelligence's ability to obey California state

traffic laws.

It is not unreasonable to require an autonomous vehicle's controlling intelligence

to meet or exceed the basic minimum level of competency expected of a human driver, in

effect making the standard problems, and acceptable responses, a “Turing test” for

autonomous vehicle controlling intelligences.

It is unreasonable to expect the public to be forgiving of an autonomous vehicle

which loses contact with a GPS signal, for example, and unexpectedly stops in a tunnel

during rush-hour traffic, or to accept the loss of life and property damage that may be

caused by an autonomous vehicle that loses the ability to distinguish between the road

and terrain in the rain, and crosses the center line of a divided highway with disastrous

consequences. As a result, standard problems must also evaluate the controlling

intelligence's ability to meet or exceed the basic minimum level of competency expected

of a human driver in similar situations.

Also, this approach would allow the controlling intelligence to be trained to

respond to situations in a manner uncharacteristic of human drivers. For example, a

human driver reacting to a vehicle entering the lane next to his or her vehicle might react

- 99 -

out of fear, pulling the steering wheel suddenly to the right or left to avoid collision, and

entering the next lane, unintentionally causing an accident. An autonomous vehicle's

controlling intelligence would be able to more effectively estimate the position of the

autonomous vehicle in relation to its surroundings, and decide not to attempt to avoid a

collision if attempting to avoid the collision will cause a collision with another vehicle

and if the autonomous vehicle will not be seriously damaged. However, if the vehicle

pulling into the lane next to it is a 40-ton tractor-trailer, the autonomous vehicle's

controlling intelligence might conclude a collision is unavoidable, and decide to collide

with a lighter vehicle, due to the tractor-trailer's greater damage potential.

XI.E.4. Team descriptions of standard reference terrain and standard problems

Several teams described attempts to gather standard reference terrain or proposed

the implementation of standard problems. However, no team proposal was

comprehensive. For example:

• Teams 2004-13 and 2004-14

Teams 2004-13 and 2004-14 were co-competitors during the 2004 GCE, and

stated: “During field trips to the Mojave desert, we have recorded more than 7 hours of

video from a vehicle-mounted camera, recording the path ahead. We have run parts of

these video sequences through our path tracking software.” ([64], p. 6 and [65], p. 7).

However, this approach was not comprehensive, in that it did not allow the teams to

adjust the mounting of the camera to optimize the performance of their path tracking

software or experiment with different types of cameras.

- 100 -

• Team 2004-20

Team 2004-20 stated: “The road-follower software has been tested against video

recordings of desert roads, with marginally satisfactory results. The imagery used was

too narrow. The road follower is being revised and will be retested with wider-field

imagery.” ([52], p. 9). As noted by Team 2004-20, this approach was not comprehensive,

in that it did not allow the team to adjust the field-of-view of the camera to optimize the

performance of their road-following software.

• Team 2004-23

Team 2004-23 described a special type of terrain called “Robot”, and stated ([34],

p. 6):

“Robot” is a special terrain/location where the

vehicle has to go through a specific exercise,

possibly with a set of predetermined operations, to go

past an obstacle or through a narrow constrained

passage.

Examples where Robot behavior may be needed include

underpasses, gates, sharp turns at roadway

intersections and possible passage through mazes of

natural and synthetic obstacles.

• Team 2005-01

In response to 2005 SQ 2.4.1, Team 2005-01 stated ([66], p. 11):

Extensive testing in the field has led to extensive

development of these corner cases. [The challenge

- 101 -

vehicle] does not return to missed waypoints, since in

many cases the road is not wide enough to make a full

turn to reach the missed waypoint. The vehicle will

continue along the assigned path in this case.

When the vehicle is “stuck”, this may occur with

wheels slipping, and the vehicle is not actually

driving forward. For this case, we detect this

condition in the National Instruments software, and

reverse a few meters to free ourselves from this

condition.

If the vehicle travels out of bounds, the “boundary”

voter immediately pushes us back into bounds by

providing a strong negative weight along any path that

continues out of bounds. If an obstacle is detected

in the path, the vehicle detects this with either the

four LADAR sensors or the five bumblebee cameras. Upon

detection, the vehicle’s path is adjusted to pass the

obstacle by with a safety margin.

• Team 2005-04

Team 2005-04 described a special case for braking or starting on a hill: “The

speed set point is generated regardless of the slope of the ground. The speed controller

- 102 -

has the 'integration' part that keeps increasing the throttle if the vehicle is slower than the

speed set point so that we can climb a hill. In order to stop short in some situations, the

vehicle applies the maximum brake pressure.” ([13] , p. 13).

At least one team failed to complete the 2004 GCE due to an inability to increase

throttle sufficiently to climb a steep hill. Team 2005-05 participated in the 2004 GCE as

Team 2004-07. Team 2005-05 later stated: “[The Team 2004-07 challenge vehicle]

traveled 5.1 miles in the 2004 Challenge... before stopping on a steep slope because of an

excessively conservative safety limit on the throttle control.” ([15], p. 528). As a result,

the author considers this problem a potential standard problem.

• Team 2005-08

Team 2005-08 stated: “...in December 2004 a team of engineers with two sensor

instrumented platforms drove large segments of the course, collecting navigation, image,

and laser data for algorithm development and design validation for components such as

the shock isolation sled.” ([56], p. 22). However, this effort was not comprehensive.

Although Team 2005-08 collected standard reference terrain similar to that expected to be

encountered during the 2005 GCE, the development of fully autonomous vehicles will

require a greater library of reference terrain be available.

• Teams 2005-13 and 2005-14

Teams 2005-13 and 2005-14 stated: “Standardized tests must be developed that

measure a robot’s ability to sense and accurately localize obstacles of varying size. These

tests should account for differing perception sensing modes. Standard tests that measure

an autonomous vehicle’s ability to safely and reliably interact with other vehicles and

- 103 -

humans are needed. These tests and others are required in order to move autonomous

ground vehicles from technological curiosities to common tools used by people

everywhere.” ([21], p. 499).

However, a library of standard obstacle detection tests is not enough. Terrain

affects obstacle detection and avoidance. Autonomous vehicles must also be taught to

recognize degraded sensor performance not caused by simple failure of the sensor, such

as lack of calibration or misalignment. For example, Team 2005-05 stated: “The virtue of

ladars used in this vertical-plane configuration is that the ground profiles are easy to

interpret, and are not particularly prone to confusion due to rolling, pitching, or bouncing

motion of the vehicle. (Of course, a six-degree error in pitch could make a marginally-

traversable 27-degree slope appear to be a marginally-untraversable 33-degree slope, or

vice versa.” ([48], p. 6).

In this particular example, the purpose of the standard pose estimation problem

would be to teach the challenge vehicle controlling intelligence to recognize the error in

pitch is caused by sensor misalignment, and compensate accordingly, and not treat the

error as a permanent change in slope resulting in a determination that traversable terrain

is not traversable, thus overcoming sensory input that is contra-indicative of the challenge

vehicle's capabilities.

Multiple solutions to such a problem exist, depending on available sensors. In

this example, the controlling intelligence may be able to estimate the slope of a road by

measuring the distance known acceleration moves the challenge vehicle in a given time;

the controlling intelligence may be able to utilize an altitude sensor or the elevation

- 104 -

reported by commercial GPS to arrive at an independent estimate of the slope of the path

of travel; or the controlling intelligence may be able to navigate the challenge vehicle

over terrain with known characteristics, such as alternating high and low “striping”, i.e.,

asphalt or concrete of alternating heights, to determine the error in pitch of the LIDAR

sensors in use.

XI.F. Time- and space-shifting

Player and Gazebo provide a “passthrough” construct which allows a client

program connecting to the Player server to receive sensor output from a client program

connecting to another Player server, and to effectively “see through their eyes”. The

author proposes using this or a similar construct to allow notional vehicles (vehicles with

no density or which do not implement ODE collision callback functions) to be “stacked”

in time or space, allowing the controlling intelligence to receive sensor output from the

simulation at some time offset in the future. This would allow the controlling intelligence

to use the future results of current decisions to make more informed decisions, and

effectively give the controlling intelligence the ability to “see” into the future as a

training tool.

XI.G. Acclimation

Develop a process of “acclimation”, whereby the controlling intelligence queries

a hardware- and software-independent abstraction layer to discover available sensors, and

then uses standard reference terrain and standard problems to acclimate itself to their use.

The acclimation process would require the controlling intelligence to learn how its

outputs correlate with inputs to the abstraction layer, and vice versa, in effect calibrating

- 105 -

itself18. This would make the controlling intelligence portable between vehicles, and

allow one team to install their controlling intelligence in another team's challenge vehicle.

As a result, teams would be competing not on the basis of hardware available to the team,

but on the basis of their use of information available from standard interfaces.

For example:

• a challenge vehicle controlling intelligence could determine its own braking

profile in a manner consistent with the method used by the U. S. Department of

Transportation if visible markers with known spacing for VISION or STEREO

sensors were painted, or vertical markers for LIDAR or RADAR sensors were

placed, on a stretch of asphalt where they could be detected by a challenge

vehicle's sensors.

• a challenge vehicle could similarly determine its own turn radius, or calibrate

control of the steering wheel, gas pedal, or brake pedal, allowing a controlling

intelligence using a hardware- and software-independent abstraction layer to

calibrate itself to the specific vehicle in which it is installed.

XI.H. Least free energy state

Develop a process for correlating “desirability” or “traversability” maps to a

concept such as the Gibbs free energy, to allow already-existing concepts to be used to

describe the cost associated with moving from one metastable state to another.

Obstacles would be represented as local maxima, regardless of whether they were

“positive” or “negative” obstacles. The height of the obstacle could be correlated to the

potential damage the vehicle that would result in the event of a collision. Each sensor or

- 106 -

combination of sensors would contribute an individual state map.

Road boundaries would be represented as continuous maxima “walls” of varying

height, depending on how tolerant the terrain is to the controlling intelligence deciding to

leave the road.

The difference between the height of the road and obstacle height maxima would

determine, for example, whether the autonomous vehicle would attempt to leave the road

to avoid an obstacle.

A route would be represented as a continuously decreasing “valley” in the local

terrain map.

Local maxima representing obstacles detected by LIDAR sensors would be added

to local maxima representing obstacles detected by RADAR, road boundaries, and the

route to produce a final traversability map.

The autonomous vehicle's controlling intelligence would always seek to travel

from one potential energy state to another, always moving from a greater potential energy

state to a lower one, like water flowing downhill.

For example:

• Team 2004-07

Team 2004-07 stated: “...a nominal minimum-cost route from each waypoint to

the next will be computed based on map data using a wavefront-propagation path

planner.” ([54], p. 5).

• Team 2004-15

Team 2004-15 described a “desirability map” ([67], p. 9) that suggests the

- 107 -

controlling intelligence was using a map similar to a free energy diagram, with

geolocation represented by the x- and y-axes, and “desirability” by the z-axis. This

suggests a decrease in desirability represents a positive slope in the free energy diagram,

or negative reinforcement to the controlling intelligence, and that an increase in

desirability represents a negative slope, or enticement. However, this model suggests the

controlling intelligence would not be able to enter an area which represents a temporary

increase in free energy (or lower desirability) to cross to an area at a net decrease in free

energy (or higher desirability). As a result, the controlling intelligence might become

stuck in a metastable state, from which it would not be able to free itself.

In addition, this approach would eliminate the potential problem of long-term

“statelessness” described by Team 2004-15 as the “heading circle”, and as a result of

which the controlling intelligence might be unable to ascertain if it is moving back and

forth between two positions of high desirability.

• Team 2004-20

Team 2004-20 maintained an extensive online repository which contained several

revisions of their technical paper prior to the final version accepted by DARPA ([52]),

including DARPA responses to their first and second revisions indicating that DARPA

requested Team 2004-20 report: “How will the potential field path planner escape from

local minima?”. No 2004 SQ contains the words “local maxima” or “local minima”.

Team 2004-20 stated: “Escaping from local minima is the job of the 'higher level'

processing...” ([52], p. 3).

- 108 -

• Team 2005-13

Team 2005-13 stated: “Fusion of perception data is via a terrain cost map and

binary obstacle map. Terrain cost maps are generated by evaluating the relative height of

a sensed area to its neighbors and assigning a cost of 0 to 255 to that area. Binary

obstacle maps are created in a two step process. First, an object detection algorithm,

customized for each sensor group, detects and localizes obstacles. Second, detected

obstacles are written into a map at the detected location.” ([19], p. 10).

In addition, most vehicles have a rollover threshold, a slope on which the vehicle

will roll. For example, Team 2004-23 stated: “The vehicle can traverse a 60% grade and

a 30% side slope.” ([34], p. 1). Typically, the left-right rollover threshold is much less for

“side slope” than the front-back threshold for “grade”. Therefore, any solution utilizing a

desirability or traversability map should assign a higher traversability to a sloped surface

it will be required to traverse parallel to the slope, versus a sloped surface it will be

required to traverse perpendicular to the slope.

XI.I. Experiment with different LIDAR configurations

By not orienting the sensors so that they intersected the ground at a fixed distance

from the vehicle, Team 2005-06 was able to make effective use of LIDAR sensors by

detecting obstacles as far from the vehicle as possible, and by using an oscillating mount,

Team 2005-06 was able to reduce the number of sensors to the minimum necessary to

accomplish this with some redundancy. The author considers this a key distinguishing

factor which differentiated Team 2005-06 from all other teams which participated in the

2004 QID or GCE or 2005 GCE, and which contributed to Team 2005-06 successfully

- 109 -

completing the 2005 GCE. See paragraph VIII.E. The use of simulation might allow

alternate mounting configurations to be objectively evaluated, revealing which are of

interest to further study.

XI.J. Extend the maximum effective range of high-quality sensors

Extend the obstacle detection range of high-quality sensors to enable the

controlling intelligence to detect obstacles at ranges consistent with speeds an

autonomous vehicle may reasonably be expected to travel. For example, in general

highway speed limits in the United States are between 60 and 70 mph. However, the

maximum effective ranges of sensors in use by teams participating in the 2004 and 2005

GCE correspond to a maximum speed of 47.6 mph (VISION sensors), 40.2 mph

(RADAR sensors), 36.0 mph (long-range LIDAR sensors), and 25.5 mph (short-range

LIDAR sensors).

In addition, no team reported a maximum speed greater than 38.0 mph. The

maximum speed reported by Team 2004-10 during the 2004 GCE was 36 mph ([68], p.

31) and the maximum speed reported by Team 2005-16 during the 2005 GCE was 38.0

mph ([51], p. 688). The maximum reported speed corresponds to a maximum effective

range of 44.6 m, between the maximum effective ranges for RADAR and long-range

LIDAR sensors.

Extending the maximum effective range of high-quality sensors will be necessary

before an autonomous vehicle will be able to achieve speeds consistent with general

highway speed limits.

- 110 -

XI.K. Use alternate speed setting strategies

Implement a controlling intelligence that wants to drive as fast as it can, and in the

most direct bearing to goal. The nodes in this example would exert a “negative pressure”,

that is, they would exert the equivalent of a braking force to the autonomous vehicle as it

attempts to drive with the throttle wide open, or the equivalent of a third hand on the

steering wheel providing a change in bearing. The resistance “felt” by the steering wheel

or gas pedal to negative pressure would be tuned to circumstances in the local

environment. For example, under normal driving conditions at high speed, the

controlling intelligence would resist minor pressure at high speeds, but not low speeds;

under normal driving conditions at low speeds, the controlling intelligence would

experience the equivalent of a driver in the passenger seat reaching across to suddenly

grab the steering wheel and change course to radically alter bearing, or to prevent the

controlling intelligence from turning into an obstacle.

- 111 -

XI.L. Make provisions to maintain the published record

The 2004 and 2005 GCE made extensive use of the Internet to solicit

participation, provide access to team resources, publish requirements, and present results.

This was a deliberate decision on the part of DARPA. DARPA stated: “DARPA

developed a website devoted to providing information about the Grand Challenge...

Interested participants and entrants used the website to communicate directly with

DARPA. The website contained a discussion forum that participants used to share ideas

about technical approaches for autonomous ground vehicles, including obstacle detection,

navigation and position location, sensing, control software, and vehicle components.”

([3], p. 3).

In general, this was a successful strategy. DARPA used the Internet effectively to

communicate with teams and the public prior to the 2004 and 2005 GCE. However, the

published record is rapidly disappearing. For example:

• DARPA made resources and references available to teams participating in the

2004 QID or GCE or 2005 GCE via the Grand Challenge Website, such as several

versions of the 2004 GCE rules, a “description of the mandatory subjects to be

addressed” in the team technical proposal, and the 2004 QID and GCE RDDFs.

The Grand Challenge Website was substantially redesigned prior to the 2005

GCE. DARPA re-published portions of the Grand Challenge Website as the

Archived Grand Challenge 2004 Website, but did not retain all published records.

As a result, the Archived Grand Challenge 2004 Website is itself an incomplete

record of events.

- 112 -

• Some teams which participated in the 2004 or 2005 GCE have since disappeared

entirely from the Internet, leaving traces only in resources and references

published by DARPA, or press about the Grand Challenge. Some of the teams

which have since disappeared and which participated in the 2005 GCE did not

publish their results via the Journal of Field Robotics. As a result, published

records of their activity are practically non-existent.

• Some companies formed at the time of the 2004 and 2005 GCE to provide

engineering or other services to teams participating in the 2004 QID or GCE or

2005 GCE have since disappeared.

At best, the Internet is an ephemeral resource. Future research which makes

extensive use of the Internet should establish requirements for the maintenance of a

permanent record of events as part of the published record.

In addition, DARPA established no requirement to publish in an academic journal

or similar publication, and there is no evidence that DARPA required teams which

participated in the 2004 and 2005 GCE to maintain records of their activities that would

allow future researchers to re-construct team challenge vehicles. The author considers it

likely other teams, in particular teams with a primary group identity of “Academic”,

maintain repositories similar to the repository maintained by Team 2004-20, but these are

of limited utility as they were not published.

DARPA intended team technical proposals to be the official published record of

the 2004 and 2005 GCE. Prior to the 2004 QID or GCE, DARPA stated: “Publication of

- 113 -

the technical completion of [sic] papers after completion of Challenge [sic] will ensure

they become part of the legacy of this event. They will be the primary mechanism from

which knowledge gained from this event is utilized in future research and development.

The technical paper does not need to be so detailed that someone could immediately build

the vehicle themselves, but it should be detailed enough to teach an interested individual

about the design.” ([69]). However, 2004 and 2005 team technical proposals provided

insufficient technical detail and contained many errors, omissions, and inconsistencies

which caused the author to conclude that they were unreliable as records let alone the

“primary mechanism from which knowledge gained from this event is utilized in future

research and development”.

- 114 -

CHAPTER XII. RESEARCH METHODOLOGY

The foundation of much of this research is critical scholarship. To the extent

possible, any conclusions presented by the author are supported by objective evidence.

For the purposes of this research, objective evidence is considered to be that presented by

primary public and academic sources which can be independently confirmed. These

sources are referred to herein as “published records”. The complete body of published

records is referred to herein as “the published record”.

To support objective, independent analysis, the author has attempted to separate

the reputations of the universities and corporations involved from analysis where possible

through the use of team numbers, in lieu of names, focus on participation in the 2004 and

2005 GCE in lieu of competition, and eliminate completely the use of informal testimony,

or hearsay.

It is possible that participants in the 2004 and 2005 GCE are able to remember

details and events which did not become part of the published record, and many of the

teams which participated in the 2004 and 2005 GCE maintain websites providing points-

of-contact through which the author could have solicited additional technical information

or requested clarification of published records. However, the author determined that

reliance on informal testimony or hearsay would introduce an additional element of

uncertainty into what is already an uncertain record, and the decision was made early to

rely on published records alone. As a result, no attempt was made to reconcile the

published record with informal testimony or hearsay through email or telephone

conversations with the teams.

- 115 -

The author does not consider manufacturer product literature to which access is

directly controlled by the manufacturer or indirectly controlled by an agent of the

manufacturer to be published records. Although the manufacturer may have a practice of

granting access to product literature on a non-discriminatory basis, the manufacturer is in

the sole position of being able to revise such literature without review. Although access

to academic sources is similarly controlled, in general, publishers grant access to

academic sources on a non-discriminatory basis, and academic sources are peer-

reviewed. The author considers the scrutiny of peer review to be essential to the

reliability of academic sources as published records. The lack of equivalent independent

peer review of manufacturer product literature is a significant deficiency.

Where the author was unable to present adequate objective evidence, anecdotal

evidence is presented, and is so noted.

In addition, from detailed review of technical guidance published by DARPA,

technical proposals published by teams participating in the 2004 and 2005 GCE, and final

published results, it is clear that published records are self-contradictory, provide

incomplete or incorrect technical information, and do not provide enough information to

answer key questions concerning team strategies during the 2004 and 2005 GCE, which

would allow the author to independently assess the success of the DARPA Grand

Challenge in one of its principal goals ([3], p. 2):

Accelerate autonomous ground vehicle technology

development in the United States in the areas of

sensors, navigation, control algorithms, vehicle

systems, and systems integration.

- 116 -

As a result, the decision was made early to reconcile published records with other

published records where possible.

Since the conclusion of the 2007 Grand Challenge, the author has become aware

of two additional sources of published records: a “privately compiled” collection of

public domain files and documents ([70]) and a book about the Grand Challenge ([71]).

The publisher alternately stated the author of the collection ([70]) was the

Department of Defense and: “Our news and educational discs are privately compiled

collections of official public domain U.S. government files and documents - they are not

produced by the federal government.” ([72]). The author concluded review of the

collection, as a “privately compiled” collection of public domain files and documents,

would not result in improvement in quality over the existing published record. As a

result, the author did not review the collection.

Review of the table of contents for the book ([71]) hosted by an Internet retailer

([72]) indicates the articles published by the Journal of Field Robotics constitute the

majority of source material. The author concluded review of the book would not result in

improvement in quality over the existing published record. As a result, the author did not

review the book.

The 2004 and 2005 GCE were highly publicized, and received a great deal of

attention from the public. DARPA stated: “There was significant publicity as a result of

the event, which increased the public’s awareness about the DoD desire to develop

autonomous ground vehicles.” ([3], p. 9). DARPA continued with a detailed description

of media coverage of the 2004 GCE.

- 117 -

The author was ultimately unable to determine whether the DARPA Grand

Challenge was an engineering challenge or an exercise in public relations, and believes

the evidence supports a conclusion that DARPA was unable to adequately determine what

problem Grand Challenge participants were being asked to solve because the difference

between the stated goal of the Grand Challenge and actual goal of the Grand Challenge

resulted in proposed solutions which did not result in significant progress toward the

actual goal of the Grand Challenge. Offered solutions were too expensive, and

improvement in challenge vehicle average speed was more a result of improvements in

processing speed due to Moore's Law than any other factor.

As a result of the emphasis on public relations, DARPA made several unfortunate

decisions concerning team participation. As a result of the enormity of the problem

domain, teams did not have enough time to fully document their efforts, or complete all

planned work or testing. Consequently, the overall quality of published records is low.

In addition, the precise definition of the Grand Challenge as a system integration

exercise which required some expertise in the area of artificial intelligence applied to

autonomous ground vehicle navigation was concealed by the format of the Grand

Challenge as a race. Yet the results of the 2004 and 2005 GCE confirm this conclusion.

The teams with the most experience in the problem domain were more successful, not

because they were better able to code an artificial intelligence, but because they more

quickly realized the limits of their sensors and computing equipment, and were able to

optimize their solution to make full use of limited sensor technology.

In addition, if an unstated goal of DARPA was to “seed” industry with graduates

- 118 -

with experience in autonomous vehicle development, it was a failure. The Grand

Challenge was not designed to reward or even emphasize the most important skill:

competent system integration at a reasonable procurement cost.

Team 2005-12, for example, successfully completed19 the major portion of the

2005 GCE course several weeks following the 2005 GCE, after having corrected the

programming error responsible for failure to complete the course during the 2005 GCE.

Team 2005-12 provided the following account ([74]):

Early Monday morning, October 31, 2005, ironically

Halloween, we set out to run the 2005 Grand Challenge

course exactly as we did during the actual Grand

Challenge. [The challenge vehicle] was using the same

RDDF (file of GPS waypoints that define the course)

and the same global constraints and control

coefficients. The only substantive difference was the

change in the “one line of code”...

Launch came at PST and was uneventful. Everything was

perfect until just miles into the course when a mirage

seemed to appear in the distance. Not to worry, it’s

the desert; however, it quickly became apparent that

the “dry” lake was not so dry. It had rained since

the Grand Challenge and the course was not traversable

in a non-amphibious vehicle. The decision was to

- 119 -

cease autonomous operation in order to not lose the

vehicle. A precise autonomous run of the 2005 GC

course was infeasible because of the rain. With the

current condition, no Grand Challenge vehicle could

have made it beyond this point. In fact, if this

condition would have existed during the Grand

Challenge, DARPA would have altered the course. It

now became evident why, during the Grand Challenge,

the course was not divulged earlier than 2 hours

before the race. I [sic] was to ensure that the

course was a fair one and that some environmental

condition had not made a part of the course

impassable.

Rather than go home, the decision was to continue to

uncover [the challenge vehicle's] autonomous

operational limits by continuing on the traversable

portions of the 2005 GC course. The first limit had

been established: it can’t traverse lakes and isn’t

smart enough to figure out a way around them, if the

“desired” course is through them. That’s the first

thing that was discovered that we need to work on.

- 120 -

After a brief diversion around the lake, autonomous

operation was reinitiated at reemergence of the 2005

GC course. This incident made it apparent that two

people were needed inside the vehicle to properly

monitor the road ahead. Other than the lake situation

(which occurred at 2 other points), the only non-

autonomous diversions were due to

1. places where the “road” had been “bulldozed”

probably to discourage exactly what we were trying to

do. These places existed at XXXX and XXXX, and

2. on XXXX a public road, where we pulled over to let

a cement truck pass us (if this situation would have

occurred during the Challenge, DARPA would have paused

the vehicle and instructed the cement truck to

carefully pass the vehicle).

These two incidents refine the operational limits that

need to be worked on. Specifically, [the challenge

vehicle] needs the capacity to be able to violate its

desired route constraints and set out to find any

feasible path ahead. At present, it does not have

- 121 -

this capability.

Also, [the challenge vehicle] was paused several

times, much the same way that DARPA may have

legitimately paused the vehicle during the Grand

Challenge. Pauses were instituted prior to crossing

public roads, the Union Pacific at-grade crossing,

upon encountering closed gates, that once opened, were

negotiated autonomously and for preparing the onboard

camera to record the traverse of Beer Bottle Pass at

night.

Except for the above constraints, none of which

existed during the Grand Challenge, [the challenge

vehicle] autonomously traversed the course. No

changes, corrections or alterations were made to any

of [the challenge vehicle's] autonomous systems. It

can be argued that [the challenge vehicle]

autonomously traversed an even more challenging course

than that of the 2005 Grand Challenge. Except for the

two lakes and the two “bulldozed” areas, [the

challenge vehicle] was autonomous, including places

where the road was significantly rougher than what

- 122 -

existed in early October.

This accomplishment is significant because Team 2005-12 is the only team known

to have completed the 2005 GCE course, as described above, using only a STEREO

sensor: one Point Grey Bumblebee stereo camera pair. No other environment sensors

were in use by Team 2005-12. As a result, the author considers Team 2005-12 to be the

most successful potentially-disruptive team to have participated in the 2005 GCE.

The most successful team overall, Team 2005-06, was not declared the winner of

the 2005 GCE. This was because the fundamental problem of the Grand Challenge

favored teams with significant experience and sponsorship. The utility of technical

solutions proposed by other successful teams is suspect. It is unreasonable to expect the

DOD to pay for a sensor package which exceeds a significant portion of the cost of the

vehicle on which it installed. DARPA did not establish a relative weighting scheme

which would allow challenge vehicle performance to be directly compared, and the

published record is utterly inadequate to the task.

The use of simulation, including the development and application of standard

reference terrain and standard problems, would provide a framework for evaluating the

application of artificial intelligence to autonomous ground vehicle navigation free of the

distraction of system integration problems which plagued teams participating in both the

2004 and 2005 GCE. As a result, the emphasis on artificial intelligence would be

restored.

Teams participating in the Grand Challenge should first have been required to

- 123 -

implement a challenge vehicle in simulation. This would minimize real cost to the teams.

In addition, some team programming hours would have been focused on improvements to

the simulation environment.

The development and testing of a challenge vehicle should have been an iterative

process, first of “tuning” the simulation environment to accurately model real world

interaction, then increasing the difficulty and duration of field testing of team challenge

vehicles via a series of challenges, moving from concept to an actual prototype and

culminating in a 2004 or 2005 GCE-like event. This would have resulted in the

development of a simulation environment which would have made it possible to fully

separate the development of artificial intelligence applied to autonomous ground vehicle

navigation from the system integration portion of the Grand Challenge, allowing

continued participation by teams lacking the resources of some teams participating in the

2004 or 2005 GCE.

DARPA's selection of teams to continue to field testing should have been made on

the basis of the performance of team implementation of a challenge vehicle controlling

intelligence in simulation when compared to the real world. Field testing should have

been accompanied by a requirement that teams participating in the Grand Challenge

deliver periodic updates documenting the results of test and evaluation, culminating in an

event similar to the 2004 or 2005 GCE.

In addition, teams participating in the Grand Challenge should have been

provided a budget, required to follow basic accounting rules, and accounted for their

expenses via the published record. This would have helped “level the playing field” by

- 124 -

mitigating the advantage of teams with significant sponsorship.

- 125 -

Table III. Team reference numbersa .

Team name20 2004 2005

A. I. Motorvators 01

Axion Racing 02 01

The Blue Team 03

Center for Intelligent Machines and Robotics (CIMAR) 04 02

CyberRider 05

Digital Audio Drive (Team DAD) 06 03

Desert Buckeyes 04

The Golem Group (2004) / The Golem Group/UCLA (2005) 07 05

The Gray Teamb 06

Insight Racing 08 07

Intelligent Vehicle Safety Systems I 08

Mitre Meteorites 09

Mojavaton 10

MonsterMoto 11

Princeton University 12

Palos Verdes High School Warriors 09

Red Team 10 13

Red Team Too 14

Rob Meyer Productions 11

Rover Systems 12

SciAutonics I (2004) / SciAutonics/Auburn Engineering (2005) 13 15

SciAutonics II 14

Stanford Racing Team 16

Team Arctic Tortoise 15

Team Cajunbot 16 17

Team Caltech 17 18

Team Cornell 19

Team ENSCO 18 20

Team LoGHIQ 19

- 126 -

Team Overbot 20

Team Phantasm 21

Team Spirit of Las Vegas 22

Team TerraMax 23 21

Terra Engineering 24

Virginia Tech (2004) / Virginia Tech Grand Challenge Team (2005) 25 22

Virginia Tech Team Rocky 23
a Teams will be referred to by the unique combination of year and identifier. For

example, Axion Racing is referred to herein as “Team 2004-02” for the 2004 QID and

GCE, and “Team 2005-01” for the 2005 GCE.

b The title of the technical proposal hosted by the archived Grand Challenge 2005

website ([77]) is “GreyTeam.pdf”, although all other references are to “The Gray Team”

or “Gray Team”. The team's preferred spelling is used herein.

- 127 -

- 128 -

Figure 2. Example image saved by Gazebo.

- 129 -

Figure 3. Team 2005-06 challenge vehicle.

- 130 -

Figure 4. Model of the representative challenge vehicle.

- 131 -

Figure 5. Tower obstacle (DARPA description).

- 132 -

Figure 6. Tower obstacle (Gazebo model).

- 133 -

Figure 7. Car obstacle (DARPA description).

- 134 -

Figure 8. Car obstacle (Gazebo model).

- 135 -

Figure 9. 2004 GCE course superimposed on map and satellite view (Powerline Road 1).

- 136 -

Figure 10. 2004 GCE course superimposed on map and satellite view (Powerline

Road 2).

- 137 -

Figure 11. Vertically-aligned LIDAR sensor configuration.

- 138 -

Figure 12. Horizontally-aligned LIDAR sensor configuration (overhead view).

- 139 -

Figure 13. Horizontally-aligned LIDAR sensor configuration (driver's seat view).

- 140 -

Figure 14. Horizontally-aligned LIDAR sensor configuration with a down angle of 4

degrees (overhead view).

- 141 -

Figure 15. Diagonally-aligned LIDAR sensor configuration (overhead view).

- 142 -

Figure 16. Diagonally-aligned LIDAR sensor configuration (driver's seat view).

- 143 -

Figure 17. Epsilon Lambda ELSC71-1A RADAR field-of-view limitation (simulation

initial state).

- 144 -

Figure 18. Epsilon Lambda ELSC71-1A RADAR field-of-view limitation (showing the

sensor cannot detect an obstacle in the path of travel).

- 145 -

Figure 19. Epsilon Lambda ELSC71-1A RADAR field-of-view limitation (after collision

with the tower obstacle).

Appendix A: Development of the

Installation Procedure

- 146 -

CHAPTER I. DEFINITIONS AND CONVENTIONS

Throughout the discussion that follows:

• “Player” refers to the Player server.

• “Gazebo” refers to the Gazebo high-fidelity robot simulator.

• The versions of relevant applications and source are documented herein.

• When a specific version of a documented or undocumented dependency was

required by installation instructions, that version is documented herein. If no

specific version was required, “-none-” is recorded.

• Development (header and library) files for documented or undocumented

dependencies were installed where available.

- 147 -

CHAPTER II. METHODOLOGY

II.A. Use current, stable, and release versions of applications and source

Because the potential simulation targets required unknown potential changes to

Player, Gazebo, and ODE, the author developed an installation procedure to ensure a

reproducible simulation environment and establish a reliable baseline from which to

proceed with any changes.

Ideally, the author would have used versions of applications and source available

during the 2004 or 2005 GCE. With a few exceptions, they are no longer available.

Although the author has versions of Player and Gazebo dating from 2004 and 2005,

specifically Player 1.6 and Gazebo 0.5.1, the author concluded attempting to base the

simulation environment on these versions of Player and Gazebo would ultimately be

unproductive due to problems encountered during the development of the installation

procedure.

As a result, the simulation environment was based on current, stable, release

versions of applications and source, with one exception: Gazebo. As noted, ideally the

author would have used versions of applications and source available during the 2004 and

2005 GCE. However, the author asserts an increase in processing power was a key factor

during the 2005 GCE, and contends that, if ten percent of the development cost of team

challenge vehicles had been invested in improvements to the simulation environment,

resulting in more rapid development, the same increase in processing power may have

been a key factor during the 2005 GCE by allowing the use of more realistic simulation,

for example, to compare the performance and capabilities of various SICK LIDAR

- 148 -

sensors or to effectively visualize the interaction of the challenge vehicle with the

environment.

The author concluded an exception must be made for Gazebo when repeated

attempts to compile the current, stable, release version of Gazebo

(“gazebo-0.9.0.tar.bz2”) failed due to “undefined reference” errors to

“FreeImage_Rescale” and “FreeImage_ConvertFromRawBits”.

These errors also occurred during the initial attempt to develop the installation

procedure (herein “initial attempt”). Although the author concluded the problem was

caused by linking errors, and most probably by a missing or inaccessible (for whatever

reason) library, attempts to manually compile past this point, modify configuration files,

and engage the community directly were unsuccessful. The author was unable to resolve

the errors and eventually abandoned the initial attempt. Similar errors occurred with

OpenGL and FFmpeg (specifically libavcodec) during the initial attempt, which were

successfully resolved.

As a result, the author downloaded the latest revision (revision 8443) of the

Gazebo 0.9.0 source code using svn:

$ svn co https://playerstage.svn.sourceforge.net/

svnroot/playerstage/code/gazebo/trunk gazebo

II.B. Use documented installation instructions, when available

Based on comments made by teams participating in the 2004 and 2005 GCE, the

author concluded most teams wanting to use Player and Gazebo as a simulation

environment would not have had the time required to troubleshoot an installation

- 149 -

procedure, and would have relied on documented installation instructions, where

available. As a result, that author installed applications or source code in accordance with

installation instructions documented by the application's developer(s) or through the use

of an automated tool when possible.

As used herein, “documented installation instructions” means installation

instructions included with applications and source code (“packaged documentation”) or

installation instructions available through online documentation (“online

documentation”). When both packaged documentation and online documentation was

available, the author favored online documentation because he believed it would be more

up-to-date than packaged documentation. As noted throughout the paragraphs that

follow, this was true for some applications but not others.

Reliance on documented installation instructions caused several problems:

• No comprehensive installation procedure was available for Gazebo. Gazebo

required several third-party libraries and the lack of a comprehensive installation

procedure was one of the two significant problems resolved while developing this

installation procedure. [78] published an alternate comprehensive installation

procedure based on Fedora 9, in lieu of openSUSE 11.2, and earlier versions of

Player, Gazebo, and their dependencies. See paragraph II.D.

• Installation instructions for some applications were incomplete.

• Installation instructions for some applications were incorrect.

• No reliable list of dependencies was available for some applications, and, in fact,

the definition of a “dependency” varied from application to application.

- 150 -

Configuration of some packages failed because “optional” libraries were not

installed. This was the cause of one of the two significant problems resolved

while developing this installation procedure. See paragraphs II.C.1. and III.G.4.

• There were conflicts between packaged documentation and online documentation

which had to be resolved on a case basis.

II.C. Troubleshoot the installation procedure

The initial attempt to develop an installation procedure for the simulation

environment failed. Attempting to resolve errors in documentation, in particular

inadequately documented dependencies and conflicting installation instructions,

consumed several weeks during which more productive research was delayed.

Problems encountered during the initial attempt and later successful attempt to

develop an installation procedure, and their resolutions, are documented herein. Because

the author revised the order of installation, used a later revision of Gazebo, and

maintained inadequate records of the initial attempt, problems encountered during the

initial attempt may not be reproducible using this order of installation and revision of

Gazebo.

However, the author developed a method for troubleshooting the installation

procedure as a result of experimentation and review of packaged and online

documentation which was used to develop the installation procedure:

II.C.1. “Optional” libraries

During the initial attempt, configuration of some applications and source failed

because “optional” libraries were not installed. Because configuration should not have

- 151 -

failed because optional libraries were not installed, the author considered these

undocumented dependencies, and resolved the problem when it occurred by installing the

undocumented dependency.

However, due to problems encountered during the initial attempt ordering the

installation procedure and determining which applications and source were true

dependencies, the author decided to limit the use of “optional” libraries to simplify the

installation procedure to the extent possible during the development of the installation

procedure. Any resulting errors were dispositioned on a case basis as either configuration

errors or evidence of undocumented dependencies. In general, configuration errors were

resolved by disabling some feature during configuration and undocumented dependencies

were resolved by installing the undocumented dependency. Resolution is documented

throughout this Appendix.

II.C.2. Order the installation procedure

Because of inadequately documented dependencies, the author used 5” X 8” index

cards to record application name, package or source file name, documented

dependencies, undocumented dependencies as they were noted, specific configuration

options, installation instructions used to compile applications from packages or source,

and any information necessary to troubleshoot installation for each application. This

allowed the author to easily re-order the steps of the installation procedure as necessary.

II.C.3. Maintain a record of errors encountered

The initial attempt ultimately failed when the author was unable to resolve many

“undefined reference” errors to OpenGL, avcodec, and FreeImage functions while

- 152 -

attempting to build the Gazebo executable. The specific step during which the

“undefined reference” errors occurred was “Linking CXX executable gazebo”.

Attempts to determine the exact cause of the errors by reviewing the Gazebo

mailing list archives were unsuccessful. An attempt by the author to solicit help by

engaging the Player Project's community more directly was also unsuccessful. A reply to

a post to the playerstage-gazebo mailing list on 25 September 2009 stated: “The latest

SVN version of Gazebo should have this problem fixed.” However, the author was

unable to determine the cause of the problem from the response and the problem was not

resolved. Attempts to compile the “latest SVN version” of Gazebo failed with the same

errors.

While attempting to resolve the errors, openSUSE 11.2 was released. The author

upgraded to openSUSE 11.2 from 11.1, and subsequently developed the installation

procedure documented by this Appendix. The initial attempt was not preserved, and the

author retained only a few records of errors encountered while attempting to build a

reproducible simulation environment. The author concluded this was a mistake which

made it more difficult to troubleshoot specific errors encountered during the initial

attempt because it was impossible to determine the effects of specific actions taken to

identify or resolve errors without being able to compare output from one attempted

solution to the next.

This resulted in a change in methodology. During the development of this

installation procedure, standard output and standard error from ./bootstrap,

./configure, make, cmake, and make install commands were re-directed to

- 153 -

files to document any errors and their successful resolution.

II.D. Comparison between the installation procedure and alternate installation

procedures

II.D.1. First alternate comprehensive procedure

[78] published an alternate comprehensive installation procedure (“alternate

procedure”) for Gazebo 0.7.0 and 0.8.0, which was based on [79], and which pre-dates

[80] and [81]. The alternate procedure for Gazebo 0.8.0 ([82]) was based on Fedora 9, in

lieu of openSUSE 11.2. Based on the initial attempt, the author determined there were

several additional problems with the use of the alternate procedure for Gazebo 0.8.0, in

addition to those noted above:

II.D.1.a. Problem: The alternate procedure refers, incorrectly, to the

NVIDIA Cg library as an “OGRE dependency”

[82] states: “OGRE dependency: nVidia Cg Toolkit”. The author considers this to

be additional evidence supporting the author's assertion that the definition of

“dependency” varies from application to application, which is discussed in more detail

throughout this Appendix.

II.D.1.b. Resolution: Re-evaluate the installation of Cg

The author re-evaluated the installation of the NVIDIA Cg library (“Cg”), and

revised the installation procedure to include step “Install Cg”. See paragraph III.H.

II.D.1.c. Problem: The alternate procedure does not require the installation

of CEGUI

[82] does not require the installation of CEGUI.

- 154 -

II.D.1.d. Resolution: Re-evaluate the installation of CEGUI

The author determined the only purpose of CEGUI in the installation procedure

was to provide support for OGRE demos. The successful installation of Gazebo was a

research objective. The author's only interest in OGRE was as a dependency for Gazebo.

As a result, the author re-evaluated the installation of CEGUI and revised the installation

procedure to delete step “Install CEGUI”. See paragraph III.G.4.

II.D.1.e. Confirm path environment variables

After the author successfully installed Gazebo using this installation procedure,

the first attempt to run Gazebo resulted in the following error:

error while loading shared libraries:

libavformat.so.52

This was similar to errors encountered during the initial attempt. The command:

export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH

appeared to resolve the error, but the author did not modify .bashrc,

.profile, or any variants thereof and subsequent attempts to run gazebo

<worldfile> from a new shell were successful without exporting

LD_LIBRARY_PATH. This error did not recur during the verification of the installation

procedure. As a result, this error was not reproducible.

However, as a result of this error and similar errors encountered during the initial

attempt, the author re-evaluated the need to either confirm the following path

environment variables include the following paths prior to verification of the installation

procedure, or export them as necessary, as noted by the alternate procedure:

- 155 -

export PATH=/usr/local/bin:$PATH

export CPATH=/usr/local/include:$CPATH

export LIBRARY_PATH=/usr/local/lib:$LIBRARY_PATH

export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig:

$PKG_CONFIG_PATH

The author revised the installation procedure to include step “Path environment

variables”.

II.D.2. Second alternate installation procedure

Shortly after verification of the installation procedure in accordance with

Appendix C, the author located a second alternate installation procedure available via

[38] while reviewing documentation for Gazebo world files and Player configuration

files. The installation instructions are hosted on the project wiki, which provides a kind

of version control documented by the page “history”. Review of the history indicates an

earlier version of the second alternate installation procedure was available while the

author was attempting to develop the installation procedure documented in Appendix B in

accordance with this Appendix. As a result, the earlier revision ([83], which is dated

March 3, 2009) is referred to as the “second alternate installation procedure” herein. The

later revision of this procedure ([84], which is dated January 12, 2010) is referred to as

the “revised second alternate installation procedure” herein.

The second installation procedure identified the following documented

dependencies:

• pkg-config

• zziplib

- 156 -

• FreeImage

• OGRE

• ODE

The author noted the following problems with the second installation procedure.

The second installation procedure:

• provides no installation instructions for Gazebo

• does not refer to the installation of development (header and library) files, for

example zziplib-devel for OGRE and libxml2-devel for Gazebo

• does not identify compatible versions of documented dependencies

• does not identify libxml2 as a dependency

• does not identify OIS as a dependency

• does not identify CEGUI as a dependency

• does not identify Cg as a dependency, although it does recommend the use of the

--disable-cg flag to disable building Cg support when configuring OGRE

• does not require Player to be installed before Gazebo

The revised second installation procedure identified the following documented

dependencies:

• FreeImage >= 3.10

• OGRE 1.70

• ODE 0.11.1

- 157 -

• boost >= 1.35

• FLTK 1.1

The revised second installation procedure provided installation instructions for

Gazebo, conforming in general to [81], and includes a section titled “Troubleshooting the

Install”. The author noted the following problems with the revised second installation

procedure. The revised second installation procedure:

• does not identify zziplib as a documented dependency of Gazebo

• does not refer to the installation of development (header and library) files, for

example zziplib-devel for OGRE and libxml2-devel for Gazebo

• does not identify libxml2 as a dependency

• does not identify OIS as a dependency

• does not identify CEGUI as a dependency, and does not recommend the use of the

--disable-ogre-demos flag to force ./configure to continue without

building the OGRE demos when configuring OGRE

• does not identify Cg as a dependency, and does not require the use of the

--disable-cg flag to disable building Cg support when configuring OGRE

• does not require Player to be installed before Gazebo

Section “Troubleshooting the Install” states, in part: “If gazebo doesn't compile...

Check the output of the configure step. Resolve all errors by installing the necessary 3rd

party packages.” However, as noted throughout this Appendix, during the initial attempt,

- 158 -

configuration of some applications and source failed because optional libraries were not

installed. Although installation of Gazebo did not result in any configuration errors due

to optional libraries, installation of OGRE, which is a documented dependency of

Gazebo, failed due to configuration errors. These errors initially caused the author to

install CEGUI, leading to one of the two significant problems encountered.

Section “Troubleshooting the Install” also states, in part: “If gazebo doesn't

compile... Make sure that the 3rd party packages are the correct versions.” However,

installation of Gazebo failed because a later version of a documented dependency was

used (OGRE version 1.6.4 was used in lieu of 1.6.3 during the initial attempt). In

addition, to configure Gazebo a later version of a documented dependency was required

than was documented (OGRE version 1.6.3 in lieu of 1.4.4. See paragraph III.L.2.a.).

II.D.2.a. Conformance of the installation procedure to the second alternate

installation procedure

Aside from the use of scons, which was the build system used by Gazebo 0.8.0,

the alternate procedure generally conforms to the installation procedure developed by the

author, with the following exceptions:

• The order of installation of all applications and source is similar but not identical.

However, the order of installation of the group of OGRE dependencies is

relatively unimportant since they are not interdependent unless CEGUI is also

installed. As a result, the true order of installation is: OGRE dependencies,

OGRE, Player, and Gazebo. ODE, having no dependencies other those provided

by the base installation, may be installed at any time prior to Gazebo.

- 159 -

• The names and versions of installed applications and source are different between

Fedora 9 and openSUSE 11.2.

• The alternate procedure uses yum in lieu of YaST as a package manager.

• A base installation of Fedora 9 provides different installed packages than

openSUSE 11.2, requiring the installation of different dependencies. For

example, both the alternate procedure and the installation procedure require the

installation of mesa and mesa-devel (as noted above, the names of installed

applications and source are different), but the alternate procedure does not require

the installation of libxml2-devel, which is a documented dependency of

Gazebo.

Therefore, although the order of installation of dependencies selected by the

author differs, the elimination of configuration errors which caused various installation

failures for the three interdependent packages OIS, CEGUI, and OGRE by revising the

“Install OGRE” step to use the --disable-ogre-demos flag to force

./configure to continue without building the OGRE demos resolved one of the two

significant problems the author encountered by eliminating the interdependence between

OIS, CEGUI, and OGRE.

Resolving this problem during the initial attempt may have eliminated weeks of

troubleshooting, and may have resulted in a working installation of Gazebo months

before the author was able to verify the installation procedure. Although the author

includes detail in this Appendix to provide a more comprehensive history of the

- 160 -

development of the installation procedure, including the installation of CEGUI, the

author cannot stress enough that if the successful installation of Gazebo, not OGRE, is a

research goal, CEGUI should, under no circumstances, be installed.

II.D.2.b. Resolution of problems noted during review of the second and

revised second alternate installation procedures

Because the author successfully verified the installation procedure documented in

Appendix B in accordance with Appendix C, problems noted during review of the second

and revised second alternate procedures were not dispositioned individually in paragraph

II.D.2., but rather as documented below:

• Installation instructions for Gazebo documented by [84] confirm the installation

instructions documented by Appendix B, step “Install Gazebo”.

• Development (header and library) files for documented and undocumented

dependencies should be installed where available.

• There are no “correct” versions of “3rd party packages”. Versions of applications

and source other than those documented by [84] may be used, for example OGRE

version 1.6.4 in lieu of 1.7.0 and FLTK version 1.1.9 in lieu of 1.1.

• Packages zziplib and zziplib-devel are documented dependencies of

OGRE, not Gazebo. The author concluded [83] is in error.

• Packages libxml2 and libxml2-devel are documented dependencies of

Gazebo. Output of the ./cmake .. command stated, in part:

--checking for module 'libxml-2.0'

-- found libxml02.0, version 2.7.3

- 161 -

The author concluded [84] is in error.

• [85] states OIS is a documented dependency of Gazebo. The author concluded

this may be an error. Output of the ./cmake .. command does not confirm

cmake checks for the presence of OIS when configuring Gazebo. The author did

not revise the installation procedure to test this, and notes OIS may be an

undocumented dependency of OGRE if CEGUI is also installed due to the

interdependence between OIS, CEGUI, and OGRE. See paragraphs III.D.1.a.,

III.G.2.a., and III.I.1.d.

• CEGUI is not a dependency of OGRE, but OGRE must be compiled with the

--disable-ogre-demos flag to eliminate a configuration error which may

be misinterpreted as a statement that CEGUI is a “necessary 3rd party package”

when configuring OGRE.

• Cg is not a dependency of OGRE, but OGRE must be compiled with the

--disable-cg flag to eliminate a configuration error which may be

misinterpreted as a statement that Cg is a “necessary 3rd party package” when

configuring OGRE.

• Player must be installed before Gazebo.

• Installation instructions for Gazebo documented by [84] confirm boost-devel

was an undocumented dependency of Gazebo. See paragraph III.L.2.g.

Overall, the author concluded neither [83] nor [84] were comprehensive, or

represented sufficient improvement over the installation procedure documented by

- 162 -

Appendix B to cause the author to revise Appendix B.

- 163 -

CHAPTER III. DEVELOPMENT OF THE INSTALLATION PROCEDURE

III.A. Base installation

Package
(source package name)

Description
(Version)

openSUSE
(openSUSE-11.2-NET-i586.iso)

openSUSE Linux distribution
(11.2)

Base Development A minimal set of tools for compiling and
linking applications
(11.2)

C/C++ Development Tools and libraries for software
development using C/C++ and other
derivatives of the C programming language
(11.2)

nvidia_gfx_kmp_default NVIDIA graphics driver kernel module for
GeForce4 GPUs
(96.43.11_2.6.31.5_0.1-20.2)

x11_video_nvidia NVIDIA graphics driver for GeForce4 GPUs
(96.43.11-21.4)

Based on familiarity with several generations of the SUSE Linux distribution, in

particular YaST (“Yet another Setup Tool”) for installation of software and management

of software updates, the author installed openSUSE 11.2 using the “Internet Installation

Boot Image” (“openSUSE-11.2-NET-i586.iso”) disk image.

The base installation included the following package groups and packages:

• the default selections for a KDE-based desktop

• “Base Development” package group (YaST pattern view)

• “C/C++ Development” package group (YaST pattern view)

• NVIDIA graphics driver kernel module

(“nvidia-gfx-kmp-default 96.43.11_2.6.31.5_0.1-20.2”)

• NVIDIA graphics driver (“x11-video-nvidia 96.43.11-21.4”)

- 164 -

The NVIDIA graphics driver kernel module and graphics driver were installed

from the NVIDIA repository (http://download.nvidia.com/opensuse/11.2) in accordance

with [86] and [87] using YaST. All other packages were installed from the openSUSE

repository (http://download.opensuse.org/).

Before installing any additional applications from packages or source, the author

archived the base installation using the YaST “System Backup” utility. The archive took

several hours to complete.

III.B. Path environment variables

Confirm the following path environment variables include the following paths, or

export them as necessary:

export PATH=/usr/local/bin:$PATH

export CPATH=/usr/local/include:$CPATH

export LIBRARY_PATH=/usr/local/lib:$LIBRARY_PATH

export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig:

$PKG_CONFIG_PATH

III.C. FreeImage

Package
(source package name)

Description
(Version)

FreeImage
(FreeImage3130.zip)

Open source image library
(3.13.0)

III.C.1. Dependencies

Documented dependency Description
(Version)

-none-

- 165 -

Undocumented dependency Description
(Version)

-none-

III.C.2. Installation instructions

[88] provided documented installation instructions.

III.C.3. Install FreeImage

Compile and install FreeImage as follows:

• $ make

• $ su

• $ make install

• $ exit

III.D. Object-oriented Input System (OIS)

Package
(source package name)

Description
(Version)

OIS
(ois_1.2.0.tar.gz)

Cross-platform object-oriented
library for handling input devices
(1.2.0)

- 166 -

III.D.1. Dependencies

Documented dependency Description
(Version)

X11 X Window System
(-none-)

OGRE
(GLX Platform)

Object-oriented Graphics Rendering
Engine
(-none-)

CEGUI
(if building CEGUIOgre OIS Demo)

Library providing windowing and
widgets for graphics APIs / engines
(0.4.0)

“Newer Linux Kernel”
(for Event API, otherwise use
--disable-joyevents)

Linux kernel
(2.6+ ?)

Undocumented dependency Description
(Version)

-none-

III.D.1.a. Problem: OIS, CEGUI, and OGRE are interdependent

The following dependencies were documented by [89]:

• X11

• Ogre (GLX Platform) & CEGUI 0.4.0 If building

CEGUIOgre OIS Demo

• Newer Linux Kernel (2.6+?) for Event API - else,

use --disable-joyevents

OGRE is a documented dependency for OIS if building the “CEGUIOgre OIS

demo”. OIS is an undocumented dependency for CEGUI if building “OGRE CEGUI

demos”. OGRE cannot be installed before CEGUI, therefore OGRE cannot be installed

before OIS. See paragraphs III.G.2.a. and III.I.1.d.

- 167 -

III.D.1.b. Resolution: None.

This problem had no known impact on the successful installation of OIS because

the author had no interest in either the “CEGUIOgre OIS demo” or “OGRE CEGUI

demos”.

III.D.2. Installation instructions

[89] provided documented installation instructions.

III.D.2.a. Problem: Option --disable-joyevents is an unrecognized

option.

The author configured the installation of OIS using:

./configure --disable-joyevents

which resulted in the following error:

 configure: WARNING: unrecognized options: --disable-

joyevents.

III.D.2.b. Resolution: None. Option --disable-joyevents is a valid

option.

[89] states option --disable-joyevents is a valid configuration option.

This problem had no known impact on the successful installation of OIS. The author

considers this a configuration error.

III.D.3. Install OIS

Configure, compile, and install OIS as follows:

• $./bootstrap

• $./configure --disable-joyevents

- 168 -

• $ make

• $ su

• $ make install

• $ exit

III.E. Open Dynamics Engine (ODE)

Package
(source package name)

Description
(Version)

ODE
(ode-0.11.1.tar.gz)

Open source library for simulating
rigid body physics
(0.11.1)

III.E.1. Dependencies

Documented dependency Description
(Version)

-none-

Undocumented dependency Description
(Version)

-none-

III.E.2. Installation instructions

[90] provided documented installation instructions.

III.E.3. Install ODE

Configure, compile, and install ODE as follows:

• $./configure

• $ make

• $ su

- 169 -

• $ make install

• $ exit

III.F. Fast Light ToolKit (FLTK)

Package
(source package name)

Description
(Version)

FLTK Cross-platform GUI toolkit
(1.1.9)

III.F.1. Dependencies

Documented dependency Description
(Version)

X11 header and library files X Window System files and libraries
required for development
(-none-)

OpenGL (or Mesa) header and library
files

Open Graphics Library files and
libraries required for development
(-none-)

JPEG header and library files JPEG files and libraries required
for development
(-none-)

Undocumented dependency Description
(Version)

-none-

III.F.1.a. Install Mesa-devel

Package Mesa 7.6-3.1 was installed as part of the base installation. To

satisfy a documented dependency, the author installed package

Mesa-devel 7.6-3.1 using YaST. Package libdrm-devel 2.4.14-2.1 was

installed by YaST to resolve a dependency.

- 170 -

III.F.2. Installation instructions

[91] provided documented installation instructions.

III.F.2.a. Problem: FLTK failed to compile because of an “invalid

conversion” error

The exact error is reproduced below:

filename_list.cxx: In function 'int

fl_filename_list(const char*, dirent***, int (*)

(dirent**, dirent**))':

filename_list.cxx:70: error: invalid conversion from

'int (*)(const void*, const void*)' to 'int(*)(const

dirent**, const dirent**)'

filename_list.cxx:70: error: initializing argument 4

of 'int scandir(const char*, dirent***, int (*)(const

dirent*), int(*)(const dirent**, const dirent**))'

III.F.2.b. Resolution: Install FLTK using YaST

Because the teams did not have the time required to troubleshoot an installation

procedure (see paragraph II.B.) and because FLTK was available for installation from the

openSUSE repository using YaST, the author did not attempt to resolve the error, and

instead installed packages fltk 1.1.9-36.1 and fltk-devel 1.1.9-36.1

using YaST.

III.F.3. Install FLTK

1. Install Mesa-devel (see paragraph III.F.1.a.).

- 171 -

2. Install fltk and fltk-devel from the openSUSE repository using

YaST.

III.G. CrazyEddie's GUI System (CEGUI)

Package
(source package name)

Description
(Version)

CEGUI
(CEGUI-0.6.2b.tar.gz)

CrazyEddie's GUI System (CEGUI)
(0.6.2b)

III.G.1. Dependencies

[92] provided a list of documented dependencies.

Documented dependency Description
(Version)

FreeType2 Software font engine
(-none-)

PCRE Perl-Compatible Regular Expressions
library
(-none-)

III.G.1.a. Install pcre-devel

Packages freetype2 2.3.9-2.2, freetype2-devel 2.3.9-2.2, and

pcre 7.9.0-2.3.1 were installed as part of the base installation. To satisfy a

documented dependency, the author installed package pcre-devel 7.9.0-2.3.1

using YaST. Packages libpcre0 7.9.0-2.3.1, libpcreposix0 7.9.0-

2.3.1, libpcrecpp0 7.9.0-2.3.1 were installed by YaST to resolve a

dependency.

Undocumented dependency Description
(Version)

-none- -none-

- 172 -

III.G.2. Installation instructions

[93] provided documented installation instructions.

III.G.2.a. Problem: OIS, CEGUI, and OGRE are interdependent

The initial attempt was based on documented installation instructions and used

documented dependencies to establish the installation procedure. OIS is a documented

dependency of Gazebo, however OIS is not a documented dependency of CEGUI.

Because OIS was not installed, configuration of CEGUI resulted in a warning which

stated, in part:

You do not have OIS installed. This is required to

build Ogre CEGUI demos.

and continued:

If you do not want to build the demos, you can safely

ignore this.

During the initial attempt, the author installed OIS before continuing with the

installation of CEGUI.

III.G.2.b. Resolution: None.

The author revised the installation procedure to install OIS before CEGUI, thus

resolving the problem. The author does not consider this a configuration error because

configuration of CEGUI continued and was successfully completed.

Based on a review of online documentation, the author determined that the normal

installation procedure for CEGUI and OGRE is: CEGUI, OGRE, then CEGUI again for

- 173 -

the “OGRE CEGUI demos”. OIS is required to be installed both before CEGUI and

OGRE, so perhaps the normal installation procedure should be: OIS, CEGUI, OGRE,

OIS (for the “CEGUIOgre Demo”), and finally CEGUI (for the “OGRE CEGUI demos”).

The author had no interest in CEGUI except as a dependency for OGRE, and so

did not attempt to determine the correct order of installation to build the “CEGUIOgre

Demo” or “OGRE CEGUI demos” using OIS, CEGUI, and OGRE. See paragraphs

III.D.1.a. and III.I.1.d.

III.G.2.c. Problem: install failed when attempting to overwrite an

existing just-created file

The very first line output by ./configure is:

checking for a BSD-compatible install...

/usr/bin/install -c.

However, man install states the -c flag is (ignored) and info

install states the -c flag is: Ignored; for compatibility with old

Unix versions of 'install'. As a result, ./configure reported success:

Now you can do make && make install. Good luck!

But attempts to make install failed as a result of “will not overwrite just-

created” file errors.

Based on a search of the CEGUI wiki ([93]) for similar problems reported by

other users, the author initially determined this problem is due to a difference between the

-c and -C options, but based on an evaluation of the results of attempting to install

files twice in a single install invocation with and without the --compare (-C)

- 174 -

option finally concluded the error is due to the fact that install will attempt to copy a file

onto itself, and fail when unsuccessful unless the --compare (-C) option is used.

By default, install fails when attempting to overwrite an existing just-created

file. However, the -C flag causes install to ignore subsequent attempts to overwrite

an existing just-created file. man install states the -C flag causes install to

“compare each pair of source and destination files, and in some cases, do not modify the

destination at all” but does not explain how this is prevented “in some cases”.

The author reviewed the GNU Core Utilities (“coreutils”) source code ([94])

to determine when the -C option prevents file copying. As a result of that review, the

author concluded there is some confusion concerning the intended use of the -C option.

The “ChangeLog” included with coreutils (coreutils 7.1 was installed as part of

the base installation) states functions have_same_content and need_copy were

added to install.c when it was modified to recognize the --compare (-C)

option to install files only when necessary.

man install recognizes the --compare (-C) option, but also states:

The full documentation for install is maintained as a

Texinfo manual. If the info and install programs are

properly installed at your site, the command

info coreutils 'install invocation'

should give you access to the complete manual.

However, the manual doesn't recognize the --compare (-C) option. The

manual states (of install): “It refuses to copy files onto themselves.” As

- 175 -

demonstrated below, this is misleading. install will copy a file onto itself, but not if

the file name occurs more than once in the same invocation.

The “ChangeLog” states function copy_file was revised to: “Skip file copying

if not necessary.” However this is also misleading, and is not the observed behavior.

Function copy_file and, by extension install, attempts to copy even if not

necessary unless the --compare (-C) option is invoked.

After reviewing the relevant source code (install.c and copy.c), the author

concluded the intended use of the --compare (-C) option is to cause install to

check to see if there is a difference between two files by several methods and prevent

copying if there is no difference between them if the option is used, but to otherwise

allow copying to fail due to a “will not overwrite just-created” error if copying a file onto

itself twice in the same invocation. As noted above, install will copy a file onto

itself, and also fail when attempting to copy a file onto itself in the same invocation

unless the --compare (-C) option is used.

The make install output indicates install failed on a line which

attempted to install the files CEGUIListHeader.h and

CEGUIListHeaderProperties.h twice. The author confirmed install

source destination will copy a source file to the destination. Subsequent

attempts to install the source file to the same destination will copy the source file to the

destination after first removing the existing file at destination:

$ install -v test.h ./test

$ 'test.h' -> './test/test.h'

- 176 -

$ install -v test.h ./test

$ removed './test/test.h'

$ 'test.h' -> './test/test.h'

Attempting to copy the file twice with a single install command fails with a “will

not overwrite just-created” file error if the file does not already exist at the destination:

$ install -v test.h test.h ./test

$ install: will not overwrite just-created

'./test/test' with 'test.h'

If the file already exists at the destination, attempting to copy the file twice with a

single install command results in the file first being overwritten, then install failing as

above with a “will not overwrite just-created” file error:

$ install -v test.h test.h ./test

$ removed './test/test.h'

$ 'test.h' -> './test/test.h'

$ install: will not overwrite just-created

'./test/test' with 'test.h'

Attempting to copy the file multiple times with a single install command

when using the -C flag results in the file being installed at the destination, but install

ignores subsequent attempts to overwrite the file:

$ install -C -v test.h test.h test.h ./test

$ 'test.h' -> './test/test.h'

If the file already exists at the destination, install ignores subsequent attempts to

overwrite the file when using the -C flag:

- 177 -

$ install -C -v test.h ./test

$ install -C -v test.h test.h ./test

$ install -C -v test.h test.h test.h ./test

III.G.2.d. Resolution: revise ./configure so that install -C is

invoked in lieu of install -c

The author resolved this problem by modifying ./configure to invoke

install -C in lieu of install -c on lines 2325, 2329, 2333, 2408, and 2644. The

author notes that the duplicate file names could also have been deleted from each line

which invoked install.

III.G.3. Install CEGUI

1. Install pcre-devel.

2. Revise ./configure to invoke install -C in lieu of

install -c.

3. Configure, compile, and install CEGUI as follows:

• $./configure

• $ make

• $ su

• $ make install

• $ exit

III.G.4. After developing the installation procedure, the author determined CEGUI

was not an undocumented dependency

Neither [95] nor [85] refer to CEGUI as a dependency. [95] refers to CEGUI as

- 178 -

an “optional” library, and [85] identifies OGRE as a dependency. Despite being an

“optional” library, the author concluded CEGUI was an undocumented dependency for

OGRE based on output from ./configure when attempting to install OGRE during

the initial attempt. Resolution of problems identified during the installation of OIS,

CEGUI, and OGRE during the initial attempt, in particular the required installation order

made effective troubleshooting more difficult.

However, as noted in paragraph II.C. above, based on failure of the initial attempt

the author developed a method for troubleshooting the installation procedure which was

used to develop the installation procedure herein. Maintaining a record of errors

encountered allowed the author to determine CEGUI was not an undocumented

dependency during the development of this installation procedure. Also, because the

author had no interest in building either the “CEGUIOgre Demo” when installing OIS or

“OGRE CEGUI demos” when installing CEGUI, the author concluded CEGUI should

not be installed.

As a result, the author revised the installation procedure to delete step “Install

CEGUI” in its entirety, revised step “Install OGRE” to use the

--disable-ogre-demos flag to force ./configure to continue without building

the OGRE demos, and confirmed OGRE installation using Cg during verification of the

installation procedure.

The author considers this a configuration error. Configuration of OGRE should

not have failed because the “optional” CEGUI library was not installed. However, the

author does not consider CEGUI an undocumented dependency of OGRE because

- 179 -

CEGUI support could be disabled.

III.H. Cg

Package
(source package name)

Description
(Version)

Cg Compile and runtime libraries for
the Cg graphics language
(2.2)

III.H.1. Dependencies

Documented dependency Description
(Version)

-none-

Undocumented dependency Description
(Version)

-none-

III.H.2. Installation instructions

[95] states only that Cg is an “optional” library. Installation instructions for Cg

were unavailable from either [95] or [96]. During the initial attempt the author

downloaded Cg (version 2.2: “Cg-2.2_April2009_x86.tgz”) from NVIDIA ([96]) and

extracted the file using the following command into the ogre directory:

sudo tar xzf ./Cg-2.2_April2009_x86.tgz

III.H.2.a. Problem: after extracting Cg into the ogre directory during the

initial attempt, it was not available to ./configure

Attempts to configure OGRE failed because Cg must be extracted into the root

directory.

- 180 -

III.H.2.b. Resolution

The author deleted the directory containing the files extracted into the ogre

directory.

III.H.2.c. Problem: extracting Cg into the root directory during the initial

attempt preserved the existing user identification and group

identification of all files in the archive

The author extracted the files using the following command into the root

directory:

sudo tar xzf ./Cg-2.2_April2009_x86.tgz

However, the existing user identification (uid) of 2402 and group identification

(gid) of 30 of all files in the archive were preserved. The author notes that this is the

default behavior for the root user, unless the option --no-same-owner is used.

III.H.2.d. Resolution

The author identified affected files as follows:

ls -a | grep 2402

The author modified the attributes of the affected files as follows:

chown root <filename>

chgrp root <filename>

Due to the failure of the initial attempt, the author decided to limit the installation

of “optional” libraries to the extent possible and did not install the NVIDIA Cg library

(“Cg”) during the development of this installation procedure, and configured OGRE with

- 181 -

the command:

./configure --with-platform=GLX --disable-cg

to force ./configure to continue without Cg support.

However, after successfully building Gazebo, the author re-evaluated the

installation of Cg based on the similarity of the alternate procedure to the installation

procedure. Because the author was only able to successfully install Cg from source with

difficulty (see paragraphs III.H.2.a. and III.H.2.c., above), the author confirmed that Cg

was available for installation from the openSUSE repository using YaST, and installed

packages cg 2.2-1.1.1 and cg-devel 2.2-1.1.1 using YaST.

The author then revised the “Install OGRE” step of the installation procedure to

not disable Cg support using the --disable-cg flag and confirmed OGRE installation

using Cg during the verification of the installation procedure.

III.H.3. Install Cg

1. Install cg and cg-devel from the openSUSE repository using YaST.

III.I. OGRE

Package
(source package name)

Description
(Version)

OGRE
(ogre-v1-6-4.tar.bz2)

Object-oriented Graphics Rendering
Engine
(1.6.4)

- 182 -

III.I.1. Dependencies

Documented dependency Description
(Version)

automake A program for generating makefiles
(1.9.5 (1.6+ required))

autoconf A tool for configuring source code
(2.59a (2.50+ required))

make The make command
(3.80)

libtool A tool to build shared libraries
(1.5.6 (1.4+ required)

pkg-config A library management system
(0.17.2)

gcc The system C compiler
(3.3.5)

g++ (gcc-c++) The system C++ compiler
(3.3.5)

cpp The system preprocessor
(3.3.5)

FreeType2 Software font engine
(2.1.x+)

zziplib Zip compression library
(0.13.x+)

FreeImage Open source image library
(-none-)

III.I.1.a. Install zziplib and zziplib-devel

To satisfy a documented dependency, the author installed package zziplb

0.13.56-2.1 and zziplib-devel 0.13.56-2.1 using YaST.

Undocumented dependency Description
(Version)

GLEW OpenGL Extension Wrangler library
(-none-)

III.I.1.b. Problem: GLEW is an undocumented dependency

The first attempt to compile OGRE failed due to a “No such file or directory”

- 183 -

error, a portion of which is reproduced below:

from OgreGLXGLSupport.cpp:35:

../../../../RenderSystems/GL/include/GL/glew.h:1128:20

: error: GL/glu.h: No such file or directory

The error suggested the problem was related to GLEW, which was not installed as

part of the base installation. Because ./configure did not warn or fail as a result, the

author considers this an undocumented dependency.

III.I.1.c. Resolution: install glew and glew-devel

To satisfy an undocumented dependency, the author installed packages

glew 1.5.1-2.1 and glew-devel 1.5.1-2.1 using YaST. Package

libGLEW1_5 1.5.1-2.1 was installed by YaST to resolve a dependency.

III.I.1.d. Problem: OIS, CEGUI, and OGRE are interdependent

The initial attempt was based on documented installation instructions and used

documented dependencies to establish the installation procedure. OGRE is a documented

dependency for Gazebo, however neither OIS nor CEGUI are documented dependencies

of OGRE. During the initial attempt, configuration of OGRE failed because neither OIS

nor CEGUI were installed.

III.I.1.e. Resolution: None.

The author revised the installation procedure to install OIS before CEGUI and

CEGUI before OGRE, thus resolving the problem. Based on a review of online

documentation, the author determined that the normal installation procedure for CEGUI

and OGRE is: CEGUI, OGRE, then CEGUI again for the “OGRE CEGUI demos”. OIS

- 184 -

is required to be installed both before CEGUI and OGRE, so perhaps the normal

installation procedure should be: OIS, CEGUI, OGRE, OIS (for the “CEGUIOgre

Demo”), and finally CEGUI (for the “OGRE CEGUI demos”).

The author had no interest in CEGUI except as a dependency for OGRE, or

OGRE except as a dependency for Gazebo, and so did not attempt to determine the

correct order of installation to build the “CEGUIOgre Demo” or “OGRE CEGUI demos”

using OIS, CEGUI, and OGRE. See paragraphs III.D.1.a. and III.G.2.a.

III.I.2. Installation instructions

[95] provided documented installation instructions.

III.I.2.a. Problem: configuration failed because the NVIDIA Cg library was

not installed. The NVIDIA Cg library is optional.

The first attempt to configure OGRE with the command:

./configure --with-platform=GLX

failed, resulting in an error which stated, in part:

You do not have the nVidia Cg libraries installed.

and continued:

You can disable the building of Cg support by

providing --disable-cg to this configure script but

this is highly discouraged as this breaks many of the

examples.

The author considers this a configuration error. ./configure should not have

failed because the “optional” NVIDIA Cg library (“Cg”) was not installed. However, the

author does not consider Cg an undocumented dependency because building Cg support

- 185 -

could be disabled.

III.I.2.b. Resolution: Install Cg using YaST

See paragraph III.H.

III.I.3. Install OGRE

1. Install zziplib and zziplib-devel.

2. Install glew and glew-devel.

3. Configure, compile, and install OGRE as follows:

• $./bootstrap

• $./configure --with-platform=GLX --disable-

ogre-demos

• $ make

• $ su

• $ make install

• $ exit

III.J. FFmpeg

FFmpeg was neither a documented nor undocumented dependency of Gazebo, but

was installed to provide access to libavcodec.

Package
(source package name)

Description
(Version)

FFmpeg
(ffmpeg-0.5.tar.bz2)

command line tool to convert
multimedia files between formats
(0.5)

- 186 -

III.J.1. Dependencies

Documented dependency Description
(Version)

make The make command
(3.81+)

Undocumented dependency Description
(Version)

-none-

III.J.2. Installation instructions

[97] provided documented installation instructions.

III.J.2.a. Problem: shared libraries were not enabled by default

The first attempt to configure, compile, and install FFmpeg was successful.

However, a subsequent attempt to compile Gazebo resulted in failure due to numerous

“undefined reference” errors to functions beginning with “av_”. The author determined

these functions were provided by libavcodec, which is provided by FFmpeg.

III.J.2.b. Resolution: enable shared libraries

The author uninstalled FFmpeg and configured the build to enable shared

libraries:

./configure --enable-shared

The author then compiled and installed FFmpeg successfully. This resolved the

“undefined reference” errors encountered when attempting to compile Gazebo.

III.J.3. Install FFmpeg

Configure, compile, and install FFmpeg as follows:

- 187 -

• $./configure --enable-shared

• $ make

• $ su

• $ make install

• $ exit

III.K. Player

Package
(source package name)

Description
(Version)

Player
(player-3.0.0.tar.gz)

the Player server
(3.0.0)

III.K.1. Dependencies

Documented dependency Description
(Version)

-none-

Undocumented dependency Description
(Version)

cmake
(cmake-2.6.4-3.3)

Cross-platform, open source make
system
(2.6.4)

III.K.1.a. Problem: cmake was an undocumented dependency

Online documentation for the Player Project was not up-to-date. The application

cmake was an undocumented dependency. The installation procedure given by [98]

(“Standard install procedure”) was:

• Download the latest Player source tarball (player-<version>.tgz) from

Sourceforge.

- 188 -

• Uncompress and expand the tarball:

$ tar xzvf player-<version>.tgz

• 'cd' into Player's source directory:

$ cd player-<version>

• To configure Player with default settings:

$./configure

• Compile Player:

$ make

• Install Player. By default, Player will be installed in /usr/local so you need to

become root for this step. Remember to return to your normal user ID afterwards.

$ make install

The installation procedures given by [99] (“Installation”) and [100] (“Out-of-

source Build”) were essentially the same:

$ cd player (this step is omitted by [99])

$ mkdir build

$ cd build

$ cmake ../

$ make (this step is omitted by [99])

$ make install

The installation procedure given by [98] was incorrect. Player 3.0.0 was released

on September 7, 2009. An announcement made to the playerstage-users mailing list

- 189 -

stated: an “entirely new build system using CMake” was a feature of the new release. As

a result, the author was aware the installation instructions for Player 3.0.0 had changed

and concluded online documentation was not updated to document the use of cmake to

configure Player 3.0.0.

Because online documentation was initially favored (see paragraph II.B.), the

author considers cmake an undocumented dependency.

III.K.1.b. Resolution: install cmake

The author installed package cmake 2.6.4-3.3 using YaST. During

development of the installation procedure, the author also installed package cmake-gui

2.6.4-3.3 using YaST to provide a more usable front-end for cmake. However, the

author did not re-install cmake-gui during the verification of the installation procedure

because it was less useful than anticipated.

III.K.2. Installation instructions

[98], [99], and [100] provided documented installation instructions. The

installation procedure given by [98] was incorrect.

III.K.2.a. Problem: the environment variables PYTHON_INCLUDE_PATH

and PYTHON_LIBRARY were set to NOTFOUND

Configuration of Player failed because the environment variables

PYTHON_INCLUDE_PATH and PYTHON_LIBRARY were set to NOTFOUND. As noted

in paragraph III.A. above, the author installed the “Base Development”and “C/C++

Development” package groups, but did not install the “Python Development” package

group.

- 190 -

III.K.2.b. Resolution: Set BUILD_PYTHONC_BINDINGS to OFF

The author used ccmake to review the configuration options and set

“BUILD_PYTHONC_BINDINGS: Build the Python bindings for the C

client library” to OFF. The configuration option

“BUILD_PYTHONCPP_BINDINGS” was then set to OFF by ccmake by default. The

author considers this a configuration error. ./configure should not have failed

because an “optional” library was not installed. The author does not consider Python an

undocumented dependency because building Python bindings for the C client library

could be disabled.

III.K.3. Install Player

1. Install cmake (see paragraph III.K.1.b.).

2. Set BUILD_PYTHONC_BINDINGS to OFF (see paragraph III.K.2.b.).

3. Configure, compile, and install Player as follows:

• $ mkdir build

• $ cd build

• $ cmake ..

• $ make

• $ su

• $ make install

• $ exit

III.L. Gazebo

[80] and [81] provide contradictory installation instructions. Neither is complete

- 191 -

or correct. The initial attempt to compile and install Gazebo failed with numerous errors.

[80] states: “If things go wrong, please check the archives of the Gazebo mailing list.”

The author found online documentation to be of limited utility. Review of available

forums including the playerstage-gazebo mailing list reveals it is not uncommon for

several people to ask the same question or describe the same problem, often with no

recorded resolution. Several of the problems the author encountered during the initial

attempt and later successful attempt were also identified by others before and after the

development of this installation procedure, without resolution.

Package
(source package name)

Description
(Version)

Gazebo
(-none-)

Gazebo
(0.9.0 rev. 8443)

III.L.1. Problems encountered before installation

III.L.1.a. Problem: installation instructions included with online

documentation are incorrect.

[80] states the following will extract Gazebo:

$ tar xvjf gazebo-<version>.tar.gz

However, Gazebo 0.9.0 is distributed as a “bz2” file (“gazebo-0.9.0.tar.bz2”). As

a result, attempting to follow these instructions results in the following error:

gzip: stdin: not in gzip format

tar: Child returned status 1

tar: Error exit delayed from previous errors

- 192 -

III.L.1.b. Resolution: None.

All other releases of the Gazebo package hosted by [38] are “.tar.gz” files. The

author concluded [80] was not updated to provide installation instructions for the current

Gazebo 0.9.0 package. The author used Ark 2.10.999 to extract Gazebo.

III.L.1.c. Problem: installation instructions included with packaged

documentation are incomplete.

[81] stated:

Installation

Read the installation instructions in the online

manual for generic instructions. For most people, the

following sequence will suffice:

$ mkdir build (inside the gazebo-trunk directory)

$ cd build

$ cmake ..

$ make

Uninstallation

Read the installation instructions in the online

manual for generic instructions. For most people, the

following sequence will suffice:

- 193 -

$ make install (inside the gazebo-trunk/build

directory)

This appears to be an editorial error. To install Gazebo, it would be necessary for

a user to read, then follow, the uninstallation instructions. No uninstallation instructions

were provided.

III.L.1.d. Resolution: None.

The author concluded installation instructions provided by [81] were incomplete.

Based on the installation instructions for Player, the author was familiar with the

installation procedure using cmake.

III.L.1.e. Problem: installation instructions provided by online

documentation do not match installation instructions provided by

packaged documentation.

Installation instructions provided by [80] do not match the installation instructions

provided by [81] (the Gazebo package contains no “INSTALL” file). [80] stated:

$ tar xvzf gazebo-<version>.tar.gz

$ cd gazebo-<version>

$ scons

Note that scons will fail if any of the required

packages are missing. Once Gazebo has been built, it

can be installed:

$ su

- 194 -

$ scons install

$ exit

Installation instructions provided by [81] are documented above.

III.L.1.f. Resolution: None.

Based on the result of trying to install Gazebo using scons, the author concluded

[80] was incorrect. See paragraph III.L.3.a.

III.L.1.g. Problem: online documentation does not provide the latest

installation instructions.

[81] also stated:

On-line installation instructions

The latest installation instructions can be found on-

line, at

 http://playerstage.sourceforge.net/doc/

However, attempting to access this URL results in a “403 error”.

III.L.1.h. Resolution: None.

The author concluded the latest installation instructions are included with

packaged documentation, not online documentation.

III.L.1.i. Problem: Online documentation directs users to the socalwifi - iptv

mailing list archive in lieu of the playerstage-gazebo mailing list

archive.

[80] stated: “If things go wrong, please check the archives of the Gazebo mailing

- 195 -

list. Please read the instructions below carefully before reporting posting [sic] to the

mailing list.” However, the hyperlink to the Gazebo mailing list

(“http://sourceforge.net/mailarchive/forum.php?forum_id=33909”) is a hyperlink to the

mailing list archive for the socalwifi-iptv project on SourceForge.net. The playerstage-

gazebo mailing list (“http://sourceforge.net/mailarchive/forum.php?forum_id=27052”) is

accessible from the Player Project “Support” page.

III.L.2. Dependencies

[85] provided a list of documented dependencies.

Documented dependency Description
(Version)

scons Replacement for make
(0.97 or greater)

fltk Cross-platform GUI toolkit
(1.1.7 or greater)

OGRE Object-oriented Graphics Rendering
Engine
(1.4.4)

ODE Open source library for simulating
rigid body physics
(0.8)

OIS Cross-platform object-oriented
library for handling input devices
(1.0)

libxml2 A library to manipulate XML files
(2.6.29 or greater)

III.L.2.a. Problem: a later version of OGRE was required to compile Gazebo

than that documented by the installation instructions

The author downloaded and installed a version of OGRE other than version 1.4.4

which [85] states is a prerequisite. The author concluded OGRE version 1.6.3 or greater

is required to compile Gazebo based on the following output of the cmake ../

- 196 -

command:

-- checking for module 'OGRE>=1.6.3'

-- found OGRE, version 1.6.4

III.L.2.b. Resolution: None

The author concluded [85] was incorrect.

III.L.2.c. Problem: libxml2-devel was not installed by default

Package libxml2 was installed as part of the base installation. However, the

development (header and library) files were not installed. Attempts to compile Gazebo

resulted in the following error:

Error: libxml2 and development files not found.

III.L.2.d. Resolution: install libxml2-devel

The author installed package libxml2-devel 2.7.3-2.2 using YaST.

Package readline-devel 6.0-18.3 was installed by YaST to resolve a

dependency.

Undocumented dependency Description
(Version)

-none

III.L.2.e. Problem: during the initial attempt the author concluded packages

freeglut and openal were undocumented dependencies

Based on errors encountered during the initial attempt, the author concluded

freeglut and openal were undocumented dependencies of Gazebo.

As a result, the author installed packages freeglut, freeglut-devel,

- 197 -

openal-soft, openal-soft-devel, and libopenal1-soft.

During development of the installation procedure, package freeglut

090301-3.1 was installed as part of the base installation, and the author installed

packages freeglut-devel 090301-3.1, openal-soft 1.9.616-1.1.1,

openal-soft-devel 1.9.616-1.1.1, and libopenal1-soft 1.9.616-

1.1.1 using YaST.

III.L.2.f. Resolution: packages freeglut and openal are optional libraries, not

undocumented dependencies

Based on the author's decisions to disposition errors on a case basis as either

configuration errors or evidence of undocumented dependencies, and to limit the use of

“optional” libraries to simplify the installation procedure to the extent possible, the author

re-evaluated the installation of these packages, determined they were optional libraries,

not undocumented dependencies, and did not install them during verification of the

installation procedure.

III.L.2.g. Problem: boost-devel is an undocumented dependency.

During the initial attempt, attempts to compile Gazebo failed because package

boost-devel was not installed.

III.L.2.h. Resolution: None.

During the initial attempt, the author installed package boost-devel

1.36.0-9.5 using YaST. This problem did not recur during the development of the

installation procedure because boost-devel 1.39.0-3.4.1 is part of the

openSUSE 11.2 “C/C++ Development” package group.

- 198 -

III.L.3. Installation instructions

[80] and [81] provided documented installation instructions.

III.L.3.a. Problem: scons is no longer used to configure or compile Gazebo

As noted in Chapter II., the author first attempted to follow documented

installation instructions. [80] states scons is used to configure, make, and install

Gazebo. The author installed package scons 1.2.0-2.2 using YaST, then attempted

to configure and compile Gazebo using scons, resulting in the following error:

scons: *** No SConstruct file found.

The SConstruct file is required.

III.L.3.b. Resolution: None.

[81] provided alternate installation instructions. The author concluded [80] was

incorrect.

III.L.3.c. Problem: an attempt to compile Gazebo resulted in a “cannot

convert” error

After successfully configuring the build of Gazebo, the author attempted to

compile Gazebo, resulting in the following error:

gazebo/server/controllers/audio/Audio.cc: In member

function 'void

gazebo::AudioController::PutAudioData()':

gazebo/server/controllers/audio/Audio.cc:160: error:

cannot convert 'gazebo::Time' to 'double' in

assignment

- 199 -

III.L.3.d. Resolution: revise file Audio.cc to eliminate the source of the

error

The author revised line 160 of file Audio.cc:

this->audioIface->data->head.time =

Simulator::Instance()->GetSimTime();

as follows:

this->audioIface->data->head.time =

Simulator::Instance()->GetSimTime().Double();

The author submitted bug report number 2909192 on December 5, 2009 to report

this problem to the Player Project.

III.L.4. Install Gazebo

1. Install libxml2-devel.

2. Revise line 160 of file Audio.cc:

this->audioIface->data->head.time =

Simulator::Instance()->GetSimTime();

as follows:

this->audioIface->data->head.time =

Simulator::Instance()->GetSimTime().Double();

3. Configure, compile, and install Gazebo as follows:

• $ mkdir build

• $ cd build

• $ cmake ..

- 200 -

• $ make

• $ su

• $ make install

• $ exit

- 201 -

Appendix B: Installation Procedure

- 202 -

I. PATH ENVIRONMENT VARIABLES

Confirm the following path environment variables include the following paths, or

export them as necessary:

export PATH=/usr/local/bin:$PATH

export CPATH=/usr/local/include:$CPATH

export LIBRARY_PATH=/usr/local/lib:$LIBRARY_PATH

export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig:

$PKG_CONFIG_PATH

II. INSTALL FREEIMAGE

Compile and install FreeImage as follows:

• $ make

• $ su

• $ make install

• $ exit

III. INSTALL OIS

Configure, compile, and install OIS as follows:

• $./bootstrap

• $./configure --disable-joyevents

• $ make

• $ su

• $ make install

• $ exit

- 203 -

IV. INSTALL ODE

Configure, compile, and install ODE as follows:

• $./configure

• $ make

• $ su

• $ make install

• $ exit

V. INSTALL FLTK

1. Install Mesa-devel from the openSUSE repository using YaST (see

paragraph III.F.1.a.).

2. Install fltk and fltk-devel from the openSUSE repository using

YaST.

VI. INSTALL CG

Install cg and cg-devel from the openSUSE repository using YaST.

VII. INSTALL OGRE

1. Install zziplib and zziplib-devel from the openSUSE repository

using YaST.

2. Install glew and glew-devel from the openSUSE repository using

YaST.

3. Configure, compile, and install OGRE as follows:

• $./bootstrap

• $./configure --with-platform=GLX --disable-

- 204 -

ogre-demos

• $ make

• $ su

• $ make install

• $ exit

VIII. INSTALL FFMPEG

Configure, compile, and install FFmpeg as follows:

• $./configure --enable-shared

• $ make

• $ su

• $ make install

• $ exit

IX. INSTALL PLAYER

1. Install cmake from the openSUSE repository using YaST (see paragraph

III.K.1.b.).

2. Configure, compile, and install Player as follows:

• $ mkdir build

• $ cd build

• $ cmake ..

• $ ccmake ..

• Set BUILD_PYTHONC_BINDINGS to OFF (see paragraph

III.K.2.b.)

• $ cmake ..

- 205 -

• $ make

• $ su

• $ make install

• $ exit

X. INSTALL GAZEBO

1. Install libxml2-devel from the openSUSE repository using YaST.

2. Revise line 160 of file Audio.cc:

this->audioIface->data->head.time =

Simulator::Instance()->GetSimTime();

as follows:

this->audioIface->data->head.time =

Simulator::Instance()->GetSimTime().Double();

3. Configure, compile, and install Gazebo as follows:

• $ mkdir build

• $ cd build

• $ cmake ..

• $ make

• $ su

• $ make install

• $ exit

- 206 -

Appendix C: Verification of the

Installation Procedure

- 207 -

I. CONVENTIONS

During verification of the installation procedure, standard output and standard

error from ./bootstrap, ./configure, cmake, make, and make install

commands were re-directed to files to confirm successful installation. The installation

procedure was verified as follows:

II. ARCHIVE THE BASE INSTALLATION

The author archived the base installation using the YaST “System Backup” utility

before installing any additional applications from packages or source. See Appendix A.

III. DEVELOP THE INSTALLATION PROCEDURE

The author developed the installation procedure. See Appendix A.

IV. DOCUMENT THE INSTALLATION PROCEDURE

The author documented the installation procedure. See Appendix B.

V. RESTORE THE BASE INSTALLATION

The author restored the base installation from backup using the YaST “System

Restoration” utility. The author decided not to re-install openSUSE because versions of

packaged software may have changed from those installed during the base installation.

However, the “System Restoration” utility functioned more or less as a new installation

of openSUSE 11.2, “restoring” the system by installing updated versions of packages

installed as part of the base installation package groups.

VI. UNINSTALL APPLICATIONS AND SOURCE INSTALLED IN ACCORDANCE

WITH APPENDIX B

The author uninstalled applications and source installed in accordance with

- 208 -

Appendix B using the make uninstall and make clean commands, with the

following exceptions:

VI.A. FreeImage

The attempt to make uninstall resulted in the following output:

make: *** No rule to make target 'uninstall'. Stop.

As a result, the author reviewed the output of the previous make install

command to determine which files were installed, then deleted the following files:

/usr/include/FreeImage.h

/usr/lib/libfreeimage.a

/usr/lib/libfreeimage-3.13.0.so

VI.B. FLTK

Packages fltk and fltk-devel were deleted when the base installation was

restored from backup.

VI.C. Cg

Packages cg and cg-devel were not installed during development of the

installation procedure.

VI.D. Player

The first attempt to run command make uninstall failed because cmake

was deleted when the base installation was restored from backup. The author installed

cmake from the openSUSE repository using YaST. Because cmake was installed

during verification of the installation procedure, it was not necessary to install it later.

The author did not revise the installation procedure to delete this step because the intent

- 209 -

of the installation procedure is to provide instructions which will result in the successful

installation of Player and Gazebo on the first attempt using the base installation as a

baseline.

The command make clean resulted in no output.

VI.E. Gazebo

The attempt to make uninstall resulted in the following output:

make: *** No rule to make target 'uninstall'. Stop.

As a result, the author archived the existing installation of Gazebo by renaming

the containing directory and then downloading Revision 8443 of the Gazebo 0.9.0 source

code using svn:

svn co https://playerstage.svn.sourceforge.net/

svnroot/playerstage/code/gazebo/trunk@8443 gazebo

File .gazeborc was deleted by the author.

The command make clean resulted in no output.

VII. RE-INSTALL APPLICATIONS AND SOURCE IN ACCORDANCE WITH

APPENDIX B

The author re-installed applications and source in accordance with Appendix B,

with the following exceptions:

- 210 -

VII.A. Step “Path environment variables”

The author exported CPATH, LIBRARY_PATH, and PKG_CONFIG_PATH. It

was not necessary to export PATH, which included directory /usr/local/bin. The

author notes that development of the installation procedure resulted in a successful

installation of Gazebo without exporting additional paths.

VII.B. Step “Install Cg”

When attempting to install cg and cg-devel from the openSUSE repository

using YaST, the author received the following warning:

nothing provides libGLU.so needed by cg-2.2-1.1.1-i586

The author confirmed package Mesa provides libGLU.so.1, and created the

following symbolic link:

/usr/lib/libGLU.so -> libGLU.so.1

then forced installation to continue. Package libstdc++33 3.3.3-15.3

was installed by YaST to resolve a dependency.

VII.C. Step “Install Player”

The first attempt to use ccmake to “Set BUILD_PYTHONC_BINDINGS to

OFF” failed because cmake had not been run. As a result, there was no

CMakeCache.txt file. The author revised step “Install Player” to require cmake to

be run before using ccmake to complete this step.

- 211 -

VIII. VERIFY A WORKING INSTALLATION OF GAZEBO

The author confirmed a working installation of Player and Gazebo by

constructing a simple Gazebo world file and Player configuration file, then executing the

following commands from the gazebo directory:

$ gazebo worlds/test.world

$ player player_cfgs/test.cfg

$ playerv

- 212 -

Appendix D: Improved Steering

Controller and Wheel

- 213 -

/*
 * Gazebo - Outdoor Multi-Robot Simulator
 * Copyright (C) 2003
 * Nate Koenig & Andrew Howard
 *
 * This program is free software; you can redistribute it and/or
modify
 * it under the terms of the GNU General Public License as published
by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
1307 USA
 *
 */
/*
 * An improved steering controller for a four-wheeled vehicle
 * Author: J. C. Allen
 * Date: 26 March 2010
 * Based on "General steering controller for any number of wheels and
configuration",
 * Jordi Polo, dated 23 Dec 2007
 */

#include "Global.hh"
#include "XMLConfig.hh"
#include "Model.hh"
#include "Simulator.hh"
#include "gazebo.h"
#include "GazeboError.hh"
#include "ControllerFactory.hh"
#include "Steering_Position2d.hh"
#include "Wheel.hh"
#include "ODEBody.hh"
#include <string.h>

using namespace gazebo;

GZ_REGISTER_STATIC_CONTROLLER("steering_position2d",
Steering_Position2d);

enum {DRIVE, STEER, FULL};

///
/////////

- 214 -

// Constructor
Steering_Position2d::Steering_Position2d(Entity *parent)
 : Controller(parent)
{
 this->myParent = dynamic_cast<Model*>(this->parent);

 if (!this->myParent)
 gzthrow("Steering_Position2d controller requires a Model as its
parent");

 Param::Begin(&this->parameters);
 // Load control parameters used by the steering controller
 this->velocityOffset = new ParamT<double>("velocityOffset", 0.0, 0);
 this->useSwaybars = new ParamT<bool>("useSwaybars", true, 0);
 this->swayForce = new ParamT<double>("swayForce", 300.0, 0);
 this->swayForceLimit = new ParamT<double>("swayForceLimit", 15.0, 0);
 this->useConstantVelocityMode = new
ParamT<bool>("useConstantVelocityMode", false, 0);
 this->useConstantSteeringAngleMode = new
ParamT<bool>("useConstantSteeringAngleMode", false, 0);
 this->constantSteeringAngle = new
ParamT<double>("constantSteeringAngle", 0.0, 0);
 this->useSafeVelocity = new ParamT<bool>("useSafeVelocity", true, 0);
 this->useTurnRadius = new ParamT<bool>("useTurnRadius", false, 0);
 this->turnRadius = new ParamT<double>("turnRadius", 46.1, 0);

 // Load default values for the steering controller
 this->defaultTorque = new ParamT<double>("torque", 1000.0, 0);
 this->defaultSteerTorque = new ParamT<double>("steerTorque", 1000.0,
0);

 // Load vehicle characteristics used by the steering controller
 this->tc = new ParamT<double>("turningCircle",11.491, 0);
 this->tw = new ParamT<double>("trackWidth", 1.580, 0);
 this->wb = new ParamT<double>("wheelBase", 2.619, 0);
 this->ssf = new ParamT<double>("ssf", 1.17, 0);
 this->vf = new ParamT<double>("velocityFinal", 27.778, 0);
 this->vt = new ParamT<double>("velocityFinalTime", 5.0, 0);
 this->tr = new ParamT<double>("tireRadius", 0.368, 0);
 this->sw = new ParamT<double>("sectionWidth", 0.235, 0);
 Param::End();

 this->enableMotors = true;

 this->prevUpdateTime = Simulator::Instance()->GetSimTime();

 this->sa=0;
 this->v=0;
}

///
/////////
// Destructor
Steering_Position2d::~Steering_Position2d()

- 215 -

{
 delete this->velocityOffset;
 delete this->useSwaybars;
 delete this->swayForce;
 delete this->swayForceLimit;
 delete this->useConstantVelocityMode;
 delete this->useConstantSteeringAngleMode;
 delete this->constantSteeringAngle;
 delete this->useSafeVelocity;
 delete this->useTurnRadius;
 delete this->turnRadius;

 delete this->defaultTorque;
 delete this->defaultSteerTorque;

 delete this->tc;
 delete this->tw;
 delete this->wb;
 delete this->ssf;
 delete this->vf;
 delete this->vt;
 delete this->tr;
 delete this->sw;
}

///
/////////
// Load the controller
void Steering_Position2d::LoadChild(XMLConfigNode *node)
{
 XMLConfigNode *childNode;
 std::string jointName, type;
 double torque, steerTorque;
 double g, r;

 this->myIface = dynamic_cast<PositionIface*>(this-
>GetIface("position"));

 // Load control parameters used by the steering controller
 this->velocityOffset->Load(node);
 this->useSwaybars->Load(node);
 this->swayForce->Load(node);
 this->swayForceLimit->Load(node);
 this->useConstantVelocityMode->Load(node);
 this->useConstantSteeringAngleMode->Load(node);
 this->constantSteeringAngle->Load(node);
 this->useSafeVelocity->Load(node);
 this->useTurnRadius->Load(node);
 this->turnRadius->Load(node);

 // Load default values for the steering controller
 this->defaultTorque->Load(node);
 this->defaultSteerTorque->Load(node);

- 216 -

 // Load vehicle characteristics used by the steering controller
 this->tc->Load(node);
 this->tw->Load(node);
 this->wb->Load(node);
 this->ssf->Load(node);
 this->vf->Load(node);
 this->vt->Load(node);
 this->tr->Load(node);
 this->sw->Load(node);

 std::cout<<"\n\nLoading the controller...\n";
 std::cout<<" Load control parameters used by the steering
controller...\n";
 std::cout<<" useSwaybars: "<<**this->useSwaybars<<"\n";
 if (**this->useSwaybars)
 {
 std::cout<<" swayForce: "<<**this->swayForce<<"\n";
 std::cout<<" swayForceLimit: "<<**this->swayForceLimit<<"\n";
 }
 std::cout<<" useConstantVelocityMode: "<<**this-
>useConstantVelocityMode<<"\n";
 std::cout<<" useConstantSteeringAngleMode: "<<**this-
>useConstantSteeringAngleMode<<"\n";
 if (**this->useConstantSteeringAngleMode)
 std::cout<<" constantSteeringAngle: "<<**this-
>constantSteeringAngle<<"\n";
 std::cout<<" useSafeVelocity: "<<**this->useSafeVelocity<<"\n";
 if (**this->useSafeVelocity)
 std::cout<<" velocityOffset: "<<**this->velocityOffset<<"
m/s\n";
 std::cout<<" useTurnRadius: "<<**this->useTurnRadius<<"\n";
 if (**this->useTurnRadius)
 std::cout<<" turnRadius: "<<**this->turnRadius<<"\n";
 std::cout<<" Load default values for the steering controller...\n";
 std::cout<<" defaultTorque: "<<**this->defaultTorque<<"\n";
 std::cout<<" defaultSteerTorque: "<<**this-
>defaultSteerTorque<<"\n";
 std::cout<<" Load vehicle characteristics used by the steering
controller...\n";
 std::cout<<" turningCircle: "<<**this->tc<<" m\n";
 std::cout<<" trackWidth: "<<**this->tw<<" m\n";
 std::cout<<" wheelBase: "<<**this->wb<<" m\n";
 std::cout<<" ssf: "<<**this->ssf<<"\n";
 std::cout<<" velocityFinal: "<<**this->vf<<" m/s\n";
 std::cout<<" velocityFinalTime: "<<**this->vt<<" s\n";
 std::cout<<" tireRadius: "<<**this->tr<<" m\n";
 std::cout<<" sectionWidth: "<<**this->sw<<" m\n";
 std::cout<<"\nLoading the joints...\n";

 childNode = node->GetChild("wheel");

 while (childNode)
 {
 // Load default values for individual wheels. These values

- 217 -

override the default values for the steering
 // controller, above.
 jointName = childNode->GetString("jointName", "", 1);
 type = childNode->GetString("type", "", 1);
 torque = childNode->GetDouble("torque", **this->defaultTorque, 0);
 if (type != "drive")
 steerTorque = childNode->GetDouble("steerTorque", **this-
>defaultSteerTorque, 0);

 std::cout<<" Loading: "<<jointName<<"\n";
 std::cout<<" type: "<<type<<"\n";
 std::cout<<" torque: "<<torque<<"\n";
 if (type != "drive")
 std::cout<<" steerTorque: "<<steerTorque<<"\n";

 Wheel *wheel=new Wheel();

 if (type == "drive")
 {
 wheel->Connect(this->myParent->GetJoint(jointName), DRIVE);
 wheel->SetTorque(torque);
 }
 else
 {
 if (type == "steer")
 {
 wheel->Connect(this->myParent->GetJoint(jointName), STEER);
 wheel->SetTorque(0); // If the wheel is not full, FMax2 should
be 0 otherwise joint will lock
 }
 else
 {
 wheel->Connect(this->myParent->GetJoint(jointName), FULL);
 wheel->SetTorque(torque);
 }
 wheel->SetSteerTorque(steerTorque);
 }
 wheels.push_back(wheel);

 childNode= childNode->GetNext("wheel");
 }

 // Calculate vehicle characteristics used by the steering controller
 g = 9.80665; // acceleration due to gravity

 std::cout<<"\nCalculated vehicle characteristics used by the steering
controller...\n";

 // Calculate maximum velocity and maximum angular velocity at vehicle
center of gravity
 if (**this->useTurnRadius)
 r = **this->turnRadius + (**this->tw + **this->sw) / 2;
 else
 r = (**this->tc + **this->tw + **this->sw) / 2;

- 218 -

 std::cout<<" Radius used to calculate maximum velocity, maximum
angular velocity, and maximum steering angle at vehicle center of
gravity: "<<r<<" m\n";

 wcgMax = sqrt(**this->ssf * g / r);

 if (**this->useSafeVelocity)
 vcgMax = sqrt(**this->ssf * r * g) + **this->velocityOffset;
 else
 vcgMax = **this->vf;

 std::cout<<" Maximum velocity at vehicle center of gravity:
"<<vcgMax<<" m/s\n";
 std::cout<<" Maximum angular velocity at vehicle center of gravity:
"<<wcgMax<<" rad/s\n";

 // Calculate maximum steering angle at vehicle center of gravity
 sacgMax = atan(**this->wb / r);

 std::cout<<" Maximum steering angle at vehicle center of gravity:
"<<sacgMax<<" rad\n";

 // Calculate constant acceleration
 a = **this->vf / **this->vt;

 std::cout<<" Acceleration: "<<a<<" m/s^2\n\n";

 vcg0 = 0;
 acg0 = 0;
}

///
/////////
// Initialize the controller
void Steering_Position2d::InitChild()
{
 // Reset odometric pose
 this->odomPose[0] = 0.0;
 this->odomPose[1] = 0.0;
 this->odomPose[2] = 0.0;

 this->odomVel[0] = 0.0;
 this->odomVel[1] = 0.0;
 this->odomVel[2] = 0.0;
}

///
/////////
// Reset the controller
void Steering_Position2d::ResetChild()
{
 // Reset odometric pose
 this->odomPose[0] = 0.0;
 this->odomPose[1] = 0.0;

- 219 -

 this->odomPose[2] = 0.0;

 this->odomVel[0] = 0.0;
 this->odomVel[1] = 0.0;
 this->odomVel[2] = 0.0;
}

///
/////////
// Update the controller
void Steering_Position2d::UpdateChild()
{
 // local variables for tire radius, track width, and wheelbase
 double tr, tw, wb;
 // turning radius of wheels 1 through 4 and vehicle center of gravity
 double r1, r2, r3, r4, rcg;
 // linear distance traveled by wheels 1 through 4 and vehicle center
of gravity
 double d1 = 0.0, d2 = 0.0, d3, d4, dcg = 0.0;
 // linear distance traveled by wheels 1 and 2 (used to calculate
vehicle pose)
 double o1, o2;
 // linear velocity of wheels 1 through 4 and vehicle center of
gravity
 double v1, v2, v3, v4, vcg;
 // tangent angles of wheels 3 and 4 and vehicle center of gravity to
circles with turning radii of
 // r3, r4, and rcg
 double a3, a4, acg = 0.0;
 // angular velocity of the STEER OR FULL wheel joints (wheels 3 and
4) or vehicle center of gravity if steering
 // angle is zero
 double wa = 0.0;
 // angular velocity of the DRIVE wheel joints (wheels 1 and 2) or
FULL wheel joints (wheels 3 and 4) or vehicle
 // center of gravity if steering angle is zero in the xz-plane (in
the direction of travel)
 double w = 0.0;

 Time dt;
 int count;

 tr = **this->tr;
 tw = **this->tw;
 wb = **this->wb;

 this->GetPositionCmd();

 dt = Simulator::Instance()->GetSimTime() - this->prevUpdateTime;
 this->prevUpdateTime = Simulator::Instance()->GetSimTime();

 std::vector<Wheel*>::iterator iter;

 // Calculate the current velocity at vehicle cg

- 220 -

 if (v >= 0)
 {
 if (v > 0.2) // we want to be able to "turn" the steering wheel
without acceleration
 {
 vcg = vcg0 + a * (v - 0.2) / (0.5 - 0.2) * dt.Double();
 if (vcg > vcgMax)
 vcg = vcgMax;
 }
 else // useConstantVelocityMode controls whether the vehicle
"coasts" to a stop or maintains constant velocity
 // when the "gas pedal" is not depressed
 {
 if (**this->useConstantVelocityMode) // maintain constant
velocity
 vcg = vcg0;
 else // "coast" to a stop
 {
 vcg = vcg0 - a * dt.Double();
 if (vcg < 0)
 vcg = 0;
 }
 }
 }
 else // v < 0
 {
 vcg = vcg0 - 3 * a * v / -0.1 * dt.Double();
 if (vcg < -vcgMax / 5)
 vcg = -vcgMax / 5;
 }

 // Calculate the distance at vehicle cg
 dcg = vcg * dt.Double();

 if (**this->useConstantSteeringAngleMode)
 sa = **this->constantSteeringAngle;

 // Calculate the angle at vehicle cg
 if (sa < -DTOR(10)) // right turn
 {
 if (sa < -sacgMax)
 sa = -sacgMax;
 if (acg > sa)
 acg = acg0 - wcgMax * dt.Double();
 if (acg <= sa)
 acg = sa;
 }
 else if (sa > DTOR(10)) // left turn
 {
 if (sa > +sacgMax)
 sa = +sacgMax;
 if (acg < sa)
 acg = acg0 + wcgMax * dt.Double();
 if (acg >= sa)

- 221 -

 acg = sa;
 }
 else // sa == 0
 acg = acg0;

 if (fabs(acg) < 0.0001) // if fabs(acg) < 0.0001, acg is
effectively 0, so we set rcg greater than the diameter of the earth
 rcg = 999999999;
 else if (fabs(acg) < 0.05) // if fabs(acg) < 0.05, we use small
angle approximation (alpha = tan(alpha))
 rcg = fabs(wb / acg);
 else
 rcg = fabs(wb / tan(acg));

 count = 0;
 for (iter=this->wheels.begin(); iter!=this->wheels.end(); iter++)
 {
 if (this->enableMotors)
 {
 // Calculate the turning radius for each wheel
 if (sa < 0) // right turn
 {
 r1 = rcg + tw / 2;
 r2 = rcg - tw / 2;
 if (count == 0) // left_front_wheel_hinge
 {
 r3 = sqrt(r1 * r1 + wb * wb);
 a3 = acg * r3 / rcg;
 wa = a3;
 d3 = dcg * r3 / rcg;
 v3 = d3 / dt.Double();
 w = v3 / tr;
 }
 else if (count == 1) // right_front_wheel_hinge
 {
 r4 = sqrt(r2 * r2 + wb * wb);
 a4 = acg * r4 / rcg;
 wa = a4;
 d4 = dcg * r4 / rcg;
 v4 = d4 / dt.Double();
 w = v4 / tr;
 }
 else if (count == 2) // left_rear_wheel_hinge
 {
 wa = 0;
 d1 = dcg * r1 / rcg;
 v1 = d1 / dt.Double();
 w = v1 / tr;
 }
 else if (count == 3) // right_rear_wheel_hinge
 {
 wa = 0;
 d2 = dcg * r2 / rcg;
 v2 = d2 / dt.Double();

- 222 -

 w = v2 / tr;
 }
 }
 else if (sa > 0) // left turn
 {
 r1 = rcg - tw / 2;
 r2 = rcg + tw / 2;
 if (count == 0) // left_front_wheel_hinge
 {
 r3 = sqrt(r1 * r1 + wb * wb);
 a3 = acg * r3 / rcg;
 wa = a3;
 d3 = dcg * r3 / rcg;
 v3 = d3 / dt.Double();
 w = v3 / tr;
 }
 else if (count == 1) // right_front_wheel_hinge
 {
 r4 = sqrt(r2 * r2 + wb * wb);
 a4 = acg * r4 / rcg;
 wa = a4;
 d4 = dcg * r4 / rcg;
 v4 = d4 / dt.Double();
 w = v4 / tr;
 }
 else if (count == 2) // left_rear_wheel_hinge
 {
 wa = 0;
 d1 = dcg * r1 / rcg;
 v1 = d1 / dt.Double();
 w = v1 / tr;
 }
 else if (count == 3) // right_rear_wheel_hinge
 {
 wa = 0;
 d2 = dcg * r2 / rcg;
 v2 = d2 / dt.Double();
 w = v2 / tr;
 }
 }
 else // sa == 0
 {
 wa = 0;
 w = vcg / tr;
 }

 (*iter)->Update(-w, -wa, **this->updatePeriodP);

 if (**this->useSwaybars)
 {
 Swaybars();
 }

 count += 1;

- 223 -

 }
 else
 {
 (*iter)->Stop();
 }
 }

 vcg0 = vcg;
 acg0 = acg;

 o1 = dt.Double() * tr * this->myParent-
>GetJoint("left_rear_wheel_hinge")->GetVelocity(0);
 o2 = dt.Double() * tr * this->myParent-
>GetJoint("right_rear_wheel_hinge")->GetVelocity(0);

 // Compute odometric pose
 this->odomPose[0] += (o1 + o2) / 2 * cos(this->odomPose[2]);
 this->odomPose[1] += (o1 + o2) / 2 * sin(this->odomPose[2]);
 this->odomPose[2] += (o1 - o2) / tw;

 // Compute odometric instantaneous velocity
 this->odomVel[0] = (o1 + o2) / 2 / dt.Double();
 this->odomVel[1] = 0.0;
 this->odomVel[2] = (o1 - o2) / tw / dt.Double();

 this->PutPositionData();
}

///
/////////
// Finalize the controller
void Steering_Position2d::FiniChild()
{
}

///
///////
// Get commands from the external interface
void Steering_Position2d::GetPositionCmd()
{
 if (this->myIface->Lock(1))
 {
 this->v = this->myIface->data->cmdVelocity.pos.x;
 this->sa = this->myIface->data->cmdVelocity.yaw;

 this->enableMotors = this->myIface->data->cmdEnableMotors > 0;

 this-myIface->Unlock();
 }
}

///
///////
// Update the data in the interface

- 224 -

void Steering_Position2d::PutPositionData()
{
 if (this->myIface->Lock(1))
 {
 // TODO: Data timestamp
 this->myIface->data->head.time = Simulator::Instance()-
>GetSimTime().Double();

 this->myIface->data->pose.pos.x = this->odomPose[0];
 this->myIface->data->pose.pos.y = this->odomPose[1];
 this->myIface->data->pose.yaw = NORMALIZE(this->odomPose[2]);

 this->myIface->data->velocity.pos.x = this->odomVel[0];
 this->myIface->data->velocity.yaw = this->odomVel[2];

 // TODO
 this->myIface->data->stall = 0;

 this-myIface->Unlock();
 }
}

///
///////
// "Anti-sway bar" implementation
void Steering_Position2d::Swaybars()
{
 Vector3 wheelAnchor;
 Vector3 bodyAnchor;
 Vector3 axis;
 Vector3 force;
 double displacement, amt;

 std::string hinge[4];

 hinge[0] = "left_front_wheel_hinge";
 hinge[1] = "right_front_wheel_hinge";
 hinge[2] = "left_rear_wheel_hinge";
 hinge[3] = "right_rear_wheel_hinge";

 for (int i = 0; i < 4; i++)
 {
 bodyAnchor = this->myParent->GetJoint(hinge[i])->GetAnchor(0);
 wheelAnchor = this->myParent->GetJoint(hinge[i])->GetAnchor(1);
 axis = this->myParent->GetJoint(hinge[i])->GetAxis(1);

 displacement = (bodyAnchor.z - wheelAnchor.z) * axis.z;
 if (displacement > 0)
 {
 amt = displacement * **this->swayForce;

 if (amt > **this->swayForceLimit)
 {
 amt = **this->swayForceLimit;

- 225 -

 }
 // "downforce"
 force.Set(-axis.x * amt, -axis.y * amt, -axis.z * amt);
 this->myParent->GetJoint(hinge[i])->GetJointBody(1)-
>SetForce(force);
 // "upforce"
 force.Set(axis.x * amt, axis.y * amt, axis.z * amt);
 this->myParent->GetJoint(hinge[i^1])->GetJointBody(1)-
>SetForce(force);
 }
 }
}

- 226 -

/*
 * Gazebo - Outdoor Multi-Robot Simulator
 * Copyright (C) 2003
 * Nate Koenig & Andrew Howard
 *
 * This program is free software; you can redistribute it and/or
modify
 * it under the terms of the GNU General Public License as published
by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
1307 USA
 *
 */
/*
 * An improved wheel for a four-wheeled vehicle
 * Author: J. C. Allen
 * Date: 26 March 2010
 * Based on "Wheel that can not be steered",
 * Jordi Polo, dated 18 Dec 2007
 */

#include "Global.hh"
#include "XMLConfig.hh"
#include "Model.hh"
#include "Body.hh"
#include "Joint.hh"
#include "World.hh"
#include "gazebo.h"
#include "GazeboError.hh"
#include "ControllerFactory.hh"
#include "Steering_Position2d.hh"
#include "Wheel.hh"
#include <string>

using namespace gazebo;

enum {DRIVE, STEER, FULL};

///
/////////
// Constructor
Wheel::Wheel()
{
}

- 227 -

///
/////////
// Destructor
Wheel::~Wheel()
{
 delete this->joint;
}

///
/////////
// Connects the wheel to a given Joint
void Wheel::Connect(Joint *joint, int type)
{
 this->joint = joint;
 this->type = type;

 if (!this->joint)
 {
 std::ostringstream stream;
 stream << "The controller couldn't get the joint " <<this->joint-
>GetName();
 gzthrow(stream.str());
 }

 // avoid an initial impulse to the joints that would make the vehicle
flip
 this->joint->SetAttribute(Joint::FUDGE_FACTOR, 0, 0.1);
}

///
/////////
// Stops the wheel
void Wheel::Stop()
{
 switch (this->type)
 {
 case DRIVE:
 this->joint->SetVelocity(0, 0);
 this->joint->SetMaxForce(0, 0);
 break;
 case STEER:
 this->joint->SetVelocity(0, 0);
 this->joint->SetMaxForce(0, 0);
 this->joint->SetVelocity(1, 0);
 this->joint->SetMaxForce(1, 0);
 break;
 default:
 this->joint->SetVelocity(0, 0);
 this->joint->SetMaxForce(0, 0);
 this->joint->SetVelocity(1, 0);
 this->joint->SetMaxForce(1, 0);
 }
}

- 228 -

///
/////////
// Set the torque
void Wheel::SetTorque(double newTorque)
{
 this->torque = newTorque;

 switch (this->type)
 {
 case DRIVE:
 this->joint->SetMaxForce(0, this->torque);
 break;
 case STEER:
 this->joint->SetMaxForce(1, this->torque);
 break;
 default:
 this->joint->SetMaxForce(1, this->torque);
 }
}

///
/////////
// Get the torque
double Wheel::GetTorque()
{
 return this->torque;
}

///
/////////
// Set the steering torque
void Wheel::SetSteerTorque(double newTorque)
{
 this->steerTorque = newTorque;

 switch (this->type)
 {
 case DRIVE: // drive wheels have no steering axis
 break;
 case STEER:
 this->joint->SetMaxForce(0, this->steerTorque);
 break;
 default:
 this->joint->SetMaxForce(0, this->steerTorque);
 }
}

///
/////////
// Get the steering torque
double Wheel::GetSteerTorque()
{
 return this->steerTorque;

- 229 -

}

///
/////////
// Update the wheel
void Wheel::Update(double speed, double steer, double rate)
{
 switch (this->type)
 {
 case DRIVE:
 this->joint->SetVelocity(0, speed);
 break;
 case STEER:
 this->joint->SetVelocity(0, rate * (steer - this->joint-
>GetAngle(0).GetAsRadian()));
 break;
 default:
 this->joint->SetVelocity(0, rate * (steer - this->joint-
>GetAngle(0).GetAsRadian()));
 this->joint->SetVelocity(1, speed);
 }
}

- 230 -

Appendix E: Example Output Produced

During Controller Validation

- 231 -

Only the output produced by the controller is included here. Output produced by

Gazebo is not included, with the exceptions of the first line showing the version number

and the line indicating Gazebo was successfully initialized:

Gazebo multi-robot simulator, version 0.10.0

Loading the controller...
 Load control parameters used by the steering controller...
 useSwaybars: 0
 useConstantVelocityMode: 1
 useConstantSteeringAngleMode: 1
 constantSteeringAngle: -0.376337
 useSafeVelocity: 1
 velocityOffset: 0 m/s
 useTurnRadius: 0
 Load default values for the steering controller...
 defaultTorque: 1000
 defaultSteerTorque: 1000
 Load vehicle characteristics used by the steering controller...
 turningCircle: 11.491 m
 trackWidth: 1.529 m
 wheelBase: 2.619 m
 ssf: 1.17
 velocityFinal: 27.778 m/s
 velocityFinalTime: 5 s
 tireRadius: 0.368 m
 sectionWidth: 0.235 m

Loading the joints...
 Loading: left_front_wheel_hinge
 type: full
 torque: 10000
 steerTorque: 10000
 Loading: right_front_wheel_hinge
 type: full
 torque: 10000
 steerTorque: 10000
 Loading: left_rear_wheel_hinge
 type: drive
 torque: 10000
 Loading: right_rear_wheel_hinge
 type: drive
 torque: 10000

Calculated vehicle characteristics used by the steering controller...
 Radius used to calculate maximum velocity, maximum angular velocity,
and maximum steering angle at vehicle center of gravity: 6.6275 m
 Maximum velocity at vehicle center of gravity: 8.72023 m/s
 Maximum angular velocity at vehicle center of gravity: 1.31577 rad/s
 Maximum steering angle at vehicle center of gravity: 0.376337 rad
 Acceleration: 5.5556 m/s^2

- 232 -

Gazebo successfully initialized

- 233 -

Appendix F: Example World File and

Model File Used During Evaluation of

2004 GCE Course Segment

2570-2571-2572

- 234 -

<?xml version="1.0"?>

<gazebo:world
 xmlns:xi="http://www.w3.org/2001/XInclude"
 xmlns:gazebo="http://playerstage.sourceforge.net/gazebo/xmlschema/#gz
"
 xmlns:model="http://playerstage.sourceforge.net/gazebo/xmlschema/#mod
el"
 xmlns:sensor="http://playerstage.sourceforge.net/gazebo/xmlschema/#se
nsor"
 xmlns:window="http://playerstage.sourceforge.net/gazebo/xmlschema/#wi
ndow"
 xmlns:param="http://playerstage.sourceforge.net/gazebo/xmlschema/#par
am"
 xmlns:body="http://playerstage.sourceforge.net/gazebo/xmlschema/#body
"
 xmlns:geom="http://playerstage.sourceforge.net/gazebo/xmlschema/#geom
"
 xmlns:joint="http://playerstage.sourceforge.net/gazebo/xmlschema/#joi
nt"
 xmlns:interface="http://playerstage.sourceforge.net/gazebo/xmlschema/
#interface"
 xmlns:ui="http://playerstage.sourceforge.net/gazebo/xmlschema/#ui"
 xmlns:rendering="http://playerstage.sourceforge.net/gazebo/xmlschema/
#rendering"
 xmlns:controller="http://playerstage.sourceforge.net/gazebo/xmlschema
/#controller"
 xmlns:physics="http://playerstage.sourceforge.net/gazebo/xmlschema/#p
hysics" >

 <verbosity>5</verbosity>

 <physics:ode>
 <stepTime>0.001</stepTime>
 <gravity>0 0 -9.80665</gravity>
 <cfm>10e-5</cfm>
 <erp>0.8</erp>
 <!-- updateRate: <0 == throttle simTime to match realTime.
 0 == No throttling
 >0 == Frequency at which to throttle the sim -->
 <updateRate>0</updateRate>
 </physics:ode>

 <rendering:gui>
 <type>fltk</type>
 <size>640 480</size>
 <pos>0 0</pos>
 </rendering:gui>

 <rendering:ogre>
 <ambient>0.4 0.4 0.4 1.0</ambient>
 <sky>
 <material>Gazebo/CloudySky</material>
 </sky>

- 235 -

 </rendering:ogre>

 <!-- Ground Plane -->
 <model:physical name="plane1_model">
 <xyz>0 0 0</xyz>
 <rpy>0 0 0</rpy>
 <static>true</static>
 <body:plane name="plane1_body">
 <geom:plane name="plane1_geom">
 <normal>0 0 1</normal>
 <size>2000 2000</size>
 <segments>10 10</segments>
 <uvTile>100 100</uvTile>
 <material>Gazebo/GrassFloor</material>
 <visual>
 <rpy>0 0 0</rpy>
 <mesh>models/02.7.924.mesh</mesh>
 <scale>1 1 1</scale>
 <material>Gazebo/Grey</material>
 </visual>
 </geom:plane>
 </body:plane>
 </model:physical>

 <!-- The camera -->
 <model:physical name="cam1_model">
 <xyz>0 0 20</xyz>
 <rpy>0 0 180</rpy>
 <static>true</static>
 <body:empty name="cam1_body">
 <sensor:camera name="cam1_sensor">
 <nearClip>0.1</nearClip>
 <farClip>100</farClip>
<!-- not in use, but named parameter
 <saveFrames>false</saveFrames>
 <saveFramePath>frames</saveFramePath>
-->
 <imageSize>640 480</imageSize>
<!-- not in use, but named parameter
 <mask></mask>
-->
 <hfov>60</hfov>
<!-- allowed image formats are: L8, R8G8B8, B8G8R8 ref: OgreCamera.cc
-->
 <imageFormat>R8G8B8</imageFormat>
<!-- not in use, but named parameter
 <updateRate></updateRate>
-->
 <controller:generic_camera name="camera_controller">
 <interface:camera name="camera_iface_0"/>
 </controller:generic_camera>
 </sensor:camera>
 </body:empty>
 </model:physical>

- 236 -

 <model:physical name="cv_model">
 <xyz>0.0 3.072 0.1</xyz>
 <rpy>0.0 0.0 0.0</rpy>
 <static>false</static>
<!--
The include should be last within a model. All previous statements
will override those in the included file
-->
 <include embedded="true">
 <xi:include href="models/cv.model" />
 </include>
 </model:physical>

 <!-- White Directional light -->
 <model:renderable name="directional_white">
 <static>true</static>
 <light>
 <type>directional</type>
 <direction>0 -0.8 -0.3</direction>
 <diffuseColor>0.9 0.9 0.9</diffuseColor>
 <specularColor>0.0 0.0 0.0</specularColor>
 <range>100</range>
 <!-- Constant(0-1) Linear(0-1) Quadratic -->
 <attenuation>0.0 1.0 0.4</attenuation>
 </light>
 </model:renderable>

</gazebo:world>

- 237 -

<?xml version="1.0"?>

<!-- Challenge Vehicle Model -->
<model:physical name="cv_model"
 xmlns:model="http://playerstage.sourceforge.net/gazebo/xmlschema/#mod
el"
 xmlns:sensor="http://playerstage.sourceforge.net/gazebo/xmlschema/#se
nsor"
 xmlns:body="http://playerstage.sourceforge.net/gazebo/xmlschema/#body
"
 xmlns:geom="http://playerstage.sourceforge.net/gazebo/xmlschema/#geom
"
 xmlns:joint="http://playerstage.sourceforge.net/gazebo/xmlschema/#joi
nt"
 xmlns:controller="http://playerstage.sourceforge.net/gazebo/xmlschema
/#controller"
 xmlns:interface="http://playerstage.sourceforge.net/gazebo/xmlschema/
#interface"
 xmlns:visual="http://playerstage.sourceforge.net/gazebo/xmlschema/#vi
sual"
>

<!--
 The following conventions are used herein:
 SI units were used to model the challenge vehicle and create the
mesh.
 "Length" refers to dimensions along the x-axis.
 "Width" refers to dimensions along the y-axis.
 "Height" refers to dimensions along the z-axis.

 The overall dimensions of the Team 2005-06 challenge vehicle were:
 Length: 174.9 in (4.442 m)
 Width: 70.1 in (1.780 m)
 Height: 70.4 in (1.788 m)
 Track width (front): 61.1 in (1.552 m)
 Track width (rear): 60.2 in (1.529 m)
 Bumper to front axle: 34.1 in (0.866 m)
 Wheelbase: 103.1 in (2.619 m)
 Rear axle to end of frame: 37.7 in (0.958 m)
 Ground clearance: 10.0 in (0.254 m)
 The chassis_body visual is located 0.495 m from the ground, to
compensate for ground clearance and an error
 of 0.894 - 0.653 = 0.241 m in distance from the ground
 Curb weight: 3792.0 lb (1720.0 kg)

 The stock tires on the Team 2005-06 challenge vehicle were
"P235/70TR16.0 BSW AS" tires. Team 2005-06
 replaced the stock tires on their challenge vehicle with: "off-road
tires that provide an extra inch of
 clearance. The new tires also have reinforced sidewalls and thicker
tread to help prevent flat tires
 due to the rocky terrain." However, Team 2005-06 provided no
additional identifying information for
 the tires in use by the team. The author used the dimensions of the

- 238 -

Team 2005-06 challenge vehicle
 stock tires herein, and did not alter the ground clearance of the
challenge vehicle.
 The overall dimensions of the Team 2005-06 challenge vehicle tires
were:
 Section width: 9.3 in (0.235 m)
 Sidewall height (from rim to tread):
 6.5 in (0.165 m)
 Rim diameter: 16.0 in (0.406 m)
 Tire radius: 14.5 in (0.368 m)

 Sidewall height (from rim to tread) is equal to 70 percent of the
section width. The sidewall aspect ratio
 for the Team 2005-06 challenge vehicle tires was 70.
 Tire radius is equal to one-half the rim diameter plus the sidewall
height (from rim to tread).

 Miscellaneous dimensions calculated to model the Team 2005-06
challenge vehicle:
 Chassis body width: 47.9 in (1.218 m)
 Chassis body height: 12.0 in (0.305 m)
 anchorOffset (rear): 1.5 in (0.038 m)
 anchorOffset (front): 2.0 in (0.050 m)
 Height of the center of gravity:
 25.7 in (0.653 m)
 Front axle to center of gravity x-dimension:
 53.4 in (1.356 m)
 Center of gravity to rear axle x-dimension:
 49.8 in (1.265 m)
 Front and rear axle to center of gravity z-dimension:
 20.7 in (0.526 m)
 Wheel well radius: 20.0 in (0.508 m)
 xy-origin to base of hood z-dimension (three-sevenths overall
height):
 (0.766 m)
 xy-origin to base of windshield z-dimension (four-sevenths overall
height):
 (1.022 m)
 xy-origin to front and rear axle z-dimension:
 6.0 in (0.152 m)
 yz-origin to base of windshield x-dimension:
 54.1 in (1.374 m)
 yz-origin to base of roof x-dimension:
 74.1 in (1.882 m)
 yz-origin to rear axle x-dimension:
 140.8 in (3.576 m)
 Roof length: 100.8 in (2.560 m)
 Front axle to end of frame x-dimension:
 140.8 in (3.576 m)

 The width of the chassis body is equal to the track width (rear)
minus section width minus twice the anchorOffset
 (rear). An arbitrary anchorOffset (rear) of 1.5 inches (0.0381 m)
was selected.

- 239 -

 The anchorOffset (front) is equal to one-half the track width (front)
minus one-half the width of the chassis
 body, minus one-half the tire width.
 The z-dimension of the anchorOffset is equal to the height of the
center of gravity minus tire radius.
 The center of gravity of the model is located at the center of mass
of the chassis body. Tires have been no mass
 as a result.
 The height of the center of gravity is equal to track width (rear)
divided by twice the vehicle's static stability
 factor.
 Roof length is equal to chassis length minus the yz-origin to base of
roof x-dimension.
 The xy-origin to front and rear axle z-dimension is equal to tire
radius minus ground clearance.
 Front axle to end of frame x-dimension is equal to wheelbase plus
rear axle to end of frame.
 Bumper to axle is equal to the chassis length minus wheelbase minus
rear axle to end of frame, or
 chassis length minus front axle to end of frame x-dimension.
-->

 <xyz>0 0 0</xyz>
 <rpy>0 0 0</rpy>
 <canonicalBody>chassis_body</canonicalBody>
 <controller:steering_position2d name="steering_controller">
 <updateRate>50</updateRate>
 <wheel>
 <jointName>left_front_wheel_hinge</jointName>
 <type>full</type>
 <torque>10000</torque>
 <steerTorque>10000</steerTorque>
 </wheel>
 <wheel>
 <jointName>right_front_wheel_hinge</jointName>
 <type>full</type>
 <torque>10000</torque>
 <steerTorque>10000</steerTorque>
 </wheel>
 <wheel>
 <jointName>left_rear_wheel_hinge</jointName>
 <type>drive</type>
 <torque>10000</torque>
 </wheel>
 <wheel>
 <jointName>right_rear_wheel_hinge</jointName>
 <type>drive</type>
 <torque>10000</torque>
 </wheel>
 <useSwaybars>false</useSwaybars>
 <swayForce>300</swayForce>
 <swayForceLimit>15</swayForceLimit>
 <useConstantVelocityMode>true</useConstantVelocityMode>
 <useConstantSteeringAngleMode>false</useConstantSteeringAngleMode>

- 240 -

 <constantSteeringAngle>0.314852</constantSteeringAngle>
 <useSafeVelocity>true</useSafeVelocity>
 <velocityOffset>2.5</velocityOffset>
 <useTurnRadius>true</useTurnRadius>
 <turnRadius>46.1</turnRadius>
 <turningCircle>11.491</turningCircle>
 <trackWidth>1.529</trackWidth>
 <wheelBase>2.619</wheelBase>
 <ssf>1.17</ssf>
 <velocityFinal>26.822</velocityFinal>
 <velocityFinalTime>5.0</velocityFinalTime>
 <tireRadius>0.368</tireRadius>
 <sectionWidth>0.235</sectionWidth>
 <interface:position name="position_iface_0"/>
 </controller:steering_position2d>
 <body:box name="chassis_body">
 <geom:box name="chassis_geom">
 <xyz>0 0 0.653</xyz>
 <size>4.442 1.218 0.305</size>
 <mass>1720</mass>
 <visual>
 <mesh>unit_box</mesh>
 <scale>4.242 1.218 0.305</scale>
 <material>Gazebo/Green</material>
 </visual>
 <visual>
 <xyz>0 0 0.495</xyz>
 <rpy>0 0 0</rpy>
 <mesh>../../Media/models/cv.mesh</mesh>
 <material>Gazebo/Pioneer2Body</material>
 <scale>1 1 1</scale>
 </visual>
 </geom:box>
 </body:box>
 <body:cylinder name="left_front_wheel">
 <xyz>1.355 0.776 0.368</xyz>
 <rpy>90 0 0</rpy>
 <geom:cylinder name="left_front_wheel_geom">
 <size>0.368 0.235</size>
 <visual>
 <mesh>../../Media/models/Pioneer2at/tire.mesh</mesh>
 <rpy>-90 0 0</rpy>
 <size>0.736 0.235 0.736</size>
 <material>Gazebo/Black</material>
 </visual>
 <visual>
 <mesh>../../Media/models/Pioneer2at/wheel.mesh</mesh>
 <rpy>-90 0 0</rpy>
 <size>0.736 0.235 0.736</size>
 <material>Gazebo/Gold</material>
 </visual>
 </geom:cylinder>
 </body:cylinder>
 <body:cylinder name="right_front_wheel">

- 241 -

 <xyz>1.355 -0.776 0.368</xyz>
 <rpy>-90 0 0</rpy>
 <geom:cylinder name="right_front_wheel_geom">
 <size>0.368 0.235</size>
 <visual>
 <mesh>../../Media/models/Pioneer2at/tire.mesh</mesh>
 <rpy>-90 0 0</rpy>
 <size>0.736 0.235 0.736</size>
 <material>Gazebo/Black</material>
 </visual>
 <visual>
 <mesh>../../Media/models/Pioneer2at/wheel.mesh</mesh>
 <rpy>-90 0 0</rpy>
 <size>0.736 0.235 0.736</size>
 <material>Gazebo/Gold</material>
 </visual>
 </geom:cylinder>
 </body:cylinder>
 <body:cylinder name="left_rear_wheel">
 <xyz>-1.264 0.765 0.368</xyz>
 <rpy>90 0 0</rpy>
 <finiteRotationMode>0</finiteRotationMode>
 <finiteRotationAxis>0 1 0</finiteRotationAxis>
 <geom:cylinder name="left_rear_wheel_geom">
 <size>0.368 0.235</size>
 <visual>
 <mesh>../../Media/models/Pioneer2at/tire.mesh</mesh>
 <rpy>-90 0 0</rpy>
 <size>0.736 0.235 0.736</size>
 <material>Gazebo/Black</material>
 </visual>
 <visual>
 <mesh>../../Media/models/Pioneer2at/wheel.mesh</mesh>
 <rpy>-90 0 0</rpy>
 <size>0.736 0.235 0.736</size>
 <material>Gazebo/Gold</material>
 </visual>
 </geom:cylinder>
 </body:cylinder>
 <body:cylinder name="right_rear_wheel">
 <xyz>-1.264 -0.765 0.368</xyz>
 <rpy>-90 0 0</rpy>
 <finiteRotationMode>0</finiteRotationMode>
 <finiteRotationAxis>0 1 0</finiteRotationAxis>
 <geom:cylinder name="right_rear_wheel_geom">
 <size>0.368 0.235</size>
 <visual>
 <mesh>../../Media/models/Pioneer2at/tire.mesh</mesh>
 <rpy>-90 0 0</rpy>
 <size>0.736 0.235 0.736</size>
 <material>Gazebo/Black</material>
 </visual>
 <visual>
 <mesh>../../Media/models/Pioneer2at/wheel.mesh</mesh>

- 242 -

 <rpy>-90 0 0</rpy>
 <size>0.736 0.235 0.736</size>
 <material>Gazebo/Gold</material>
 </visual>
 </geom:cylinder>
 </body:cylinder>
 <joint:hinge2 name="left_front_wheel_hinge">
 <body1>chassis_body</body1>
 <body2>left_front_wheel</body2>
 <anchor>left_front_wheel</anchor>
 <axis1>0 0 1</axis1>
 <axis2>0 1 0</axis2>
 <erp>0.8</erp>
 <cfm>10e-5</cfm>
 </joint:hinge2>
 <joint:hinge2 name="right_front_wheel_hinge">
 <body1>chassis_body</body1>
 <body2>right_front_wheel</body2>
 <anchor>right_front_wheel</anchor>
 <axis1>0 0 1</axis1>
 <axis2>0 1 0</axis2>
 <erp>0.8</erp>
 <cfm>10e-5</cfm>
 </joint:hinge2>
 <joint:hinge name="left_rear_wheel_hinge">
 <body1>chassis_body</body1>
 <body2>left_rear_wheel</body2>
 <anchor>left_rear_wheel</anchor>
 <axis>0 1 0</axis>
 <erp>0.8</erp>
 <cfm>10e-5</cfm>
 </joint:hinge>
 <joint:hinge name="right_rear_wheel_hinge">
 <body1>chassis_body</body1>
 <body2>right_rear_wheel</body2>
 <anchor>right_rear_wheel</anchor>
 <axis>0 1 0</axis>
 <erp>0.8</erp>
 <cfm>10e-5</cfm>
 </joint:hinge>
</model:physical>

- 243 -

Appendix G: Miscellaneous Problems

Encountered

- 244 -

I. PROBLEMS ENCOUNTERED WHILE VERIFYING PLAYER AND GAZEBO

I.A. Gazebo “Namespace prefix ... is not defined” errors

While attempting to verify Player and Gazebo using the packaged “simplecar”

model, the author encountered a number of “Namespace prefix ... is not

defined” errors.

Through review of the Gazebo mailing list archives, the author determined these

errors were caused by missing <xmlns> declarations at the beginning of the file

defining the packaged simplecar model, file simplecar.model. Including these

declarations resolved the problem.

The author was unable to determine why some users of Gazebo were able to load

this model without modification, as reported on the Gazebo mailing list, or why the

packaged simplecar model was not revised to correct the problem when it was first

reported on September 9, 2009. The author submitted patch number 2934729 to resolve

the “Namespace prefix ... is not defined” errors on January 29, 2010.

I.B. Player “Unhandled message for driver device” error

While attempting to verify Player and Gazebo using the packaged examples, the

author encountered an “Unhandled message for driver device” error.

While this error occurred, the simplecar model would move slightly, then suddenly come

to a stop, with unpredictable results. Sometimes the rear end of the vehicle would bounce

into the air, and sometimes the vehicle would simply stop. After coming to rest, the

model would no longer respond to commands. The author eventually identified the cause

of this problem. See paragraph I.E.

- 245 -

While searching the Gazebo source code to determine the source of the error, the

author noted the svn version of Gazebo revision 8443 included two copies of an 11.8 MB

file in directories “examples/player/ptz/.player” and

“examples/player/ptz/.svn/text-base/.player.svn-base” in which

this error is repeated thousands of times. The compressed size of the Gazebo source

distribution (“gazebo-0.9.0.tar.bz2”) originally downloaded by the author, and

which would not compile, was 17.4 MB. The copy of this file in directory

“examples/player/ptz/.svn/text-base/.player.svn-base” was not

included in the source distribution, but the copy in directory

“examples/player/ptz/.player” was included in the source distribution.

I.C. ODE “bNormalizationResult” error

While attempting to verify Player and Gazebo using the packaged simplecar

model, the author encountered the following ODE error:

ODE INTERNAL ERROR 1: assertion "bNormalizationResult"

failed in _dNormalize3()

[../../../include/ode/odemath.h] Aborted

Based on a review of ODE documentation ([44]), the author proposed this

problem was related to the order of bodies in “hinge2” <joint> declarations in file

simplecar.model, specifically a mismatch between bodies and the <anchor>

declaration of the joint. ODE documentation states function

dJointGetHinge2Anchor, corresponding to the file simplecar.model

<anchor> declaration “returns the point on body 1”, and that function

- 246 -

dJointGetHinge2Anchor2 “returns the point on body 2”. However, in the

packaged version of file simplecar.model, the <anchor> declaration refers to the

“left_front_wheel” and the <body1> declaration refers to the “chassis_body”. The

author therefore reversed the order of the bodies in the <joint> declaration.

When the order of the bodies was reversed, the model would load successfully.

The author submitted patch number 2934693 to reverse the order of the bodies in the

<joint> declaration on January 19, 2010. However, the author was unable to interact

with the model using the playerv utility at this time.

While attempting to resolve this problem, the author posted a message reporting

the above to the Gazebo mailing list, and received the following reply: “I've seen

bNormalizationResult in the past due to float/double inconsistency between ode and

gazebo.” ([101]). As a result, the author uninstalled ODE in accordance with Appendix C

and re-installed ODE in accordance with Appendix B using the

“--enable-double-precision” and “--enable-demos” flags. The use of the

“--enable-double-precision” flag to enable double precision in ODE resulted

in errors when attempting to run Gazebo. The author then uninstalled ODE in accordance

with Appendix C and re-installed ODE in accordance with Appendix B using the

“--enable-demos” flag and confirmed that the ODE demos would run without

errors.

Finally, the author uninstalled ODE in accordance with Appendix C and re-

installed ODE in accordance with Appendix B using the “--enable-demos” and

“--disable-asserts” flags to disable assertion checking. The author was unable to

- 247 -

determine why installation instructions for Gazebo do not require the use of the

“--disable-asserts” flag when compiling ODE for use with Gazebo. As a result,

the author's only conclusion is that a default installation of Gazebo using a default

installation of ODE will fail due to ODE assertions when attempting to load the packaged

simplecar model.

I.D. Playerv “Devices>position2d” menu

As noted in paragraph I.C., the author was unable to interact with the packaged

simplecar model using the playerv utility. The simplecar model would move slightly,

then suddenly come to a stop, with unpredictable results. Sometimes the rear end of the

vehicle would bounce into the air, and sometimes the vehicle would simply stop. After

coming to rest, the model would no longer respond to commands.

The author initially proposed the problem was due to the interaction between the

disabling of a menu item via function rtk_menuitem_isactivated in file

rtk_menu.c and function position2d_create in file

pv_dev_position2d.c. File pv_dev_position2d.c creates menu items

“Enable” and “Disable” on the “Devices>position2d” menu in the playerv utility

which appeared to be disabled by default (i.e., no checkbox is available to enable or

disable the position2d interface), and file rtk_menu.c appeared to disable menu items

as soon as they were enabled via the following lines:

if (item->activated)

{

 item->activated = FALSE;

- 248 -

 return TRUE;

}

The author revised file pv_dev_position2d.c to enable the menu items to

be enabled (i.e., to display a checkbox indicating their status). The author was then able

to verify the device was enabled as expected and remained enabled while attempting to

command the simplecar model using the playerv utility.

Following resolution of the Gazebo ODEHingeJoint.cc error (see paragraph

I.E.), the author discovered the menu items “Enable” and “Disable” on the

“Devices>position2d” menu in the playerv utility can be enabled despite not having an

associated checkbox and that the playerv utility cannot be used to command a model

using the position2d interface unless the space next to the “Enable” interface option in the

“Devices>position2d” menu, where a checkbox would be if the “Enable” interface option

were enabled, is first clicked on. The author was unable to determine why the “Enable”

and “Disable” options appear to be disabled.

I.E. Gazebo “ODEHingeJoint.cc” error

As noted in paragraph I.C., the author was unable to interact with the simplecar

model using the playerv utility. Initially, the author proposed the cause of the problem

was the disabling of the position2d interface as soon as it was enabled. The author

determined that although a problem exists (to enable the position2d interface, users must

click a non-existent checkbox next to “Enable” in the “Devices>position2d” menu), the

problem did not cause the observed behavior. See paragraph I.D.

The author has been monitoring the “playerstage-developers”, “playerstage-

- 249 -

gazebo”, and “playerstage-users” mailing list since beginning this research. Another user

identified one of the two causes of this problem the author has been able to verify, and

submitted bug report number 2933700 on January 17, 2010 to report it to the Player

Project. The order of parameters passed to function “SetParam” in file

ODEHingeJoint.cc, function:

void ODEHingeJoint::SetVelocity(int /*index*/, double

angle)

{

 this->SetParam(angle, dParamVel);

}

was reversed. The function should be:

void ODEHingeJoint::SetVelocity(int /*index*/, double

angle)

{

 this->SetParam(dParamVel, angle);

}

The author reversed the order of parameters as described and was able to verify

Player and Gazebo using the packaged examples, specifically the simplecar model.

II. PROBLEMS ENCOUNTERED WHILE VALIDATING THE IMPROVED

CONTROLLER

II.A. Gazebo ODEHinge2Joint::GetAngle and GetVelocity problem

While validating the improved controller, the author encountered a problem when

setting the angular velocity of the steering wheels around the steering axis. Under certain

- 250 -

circumstances, the angular velocity of a steering wheel, typically the outside wheel,

would increase suddenly due to a large difference between the target steering angle and

current steering angle. This caused the steering wheel to suddenly turn at high speed

around the steering axis. The effect of friction would then cause the wheel to appear to

“dig in” and throw the rear of the model into the air.

Although this behavior is consistent with expectations from the perspective of

physical realism, the purpose of the improved controller was to effectively limit the

maximum angular velocity at model CG to prevent the model from being able to turn at a

rate faster than allowed by representative challenge vehicle and course geometry and

thereby prevent rollover. The purpose of the improved controller was to prevent exactly

this problem.

The angular velocity of each steering wheel around the steering axis is determined

by the difference between the target steering angle and current steering angle of the wheel

and the update rate of the improved controller. Multiplying the difference by the update

rate yields the angular velocity which must be applied to reach the target steering angle in

one controller time step. The controller limits the angular velocity to the calculated

angular velocity or maximum angular velocity at model CG, whichever is less.

The author originally proposed this problem was caused by Gazebo function

ODEHinge2Joint::GetAngle, which is a wrapper around ODE function

dJointGetHinge2Angle1, which itself is a wrapper around ODE function

dxJointHinge2::measureAngle. This function returns the value of the C

programming language function atan2, which is undefined if both arguments are equal

- 251 -

to zero. The author noted that the problem occurred at approximately the same time and

position in each trial, and proposed it was related to the difference between the target

steering angle and current steering angle of the steering wheel approaching zero because

the value returned by function ODEHinge2Joint::GetAngle increased suddenly as

the current steering angle approached the target steering angle in each trial.

The author attempted several solutions to this problem: revising the time step,

reducing the mass of the representative challenge vehicle, and setting the velocity of the

chassis body directly during each time step. Each proposed solution was rejected as

unrealistic or problematic.

The author then revised improved controller function Wheel::Update to store

the last known value returned by function ODEHinge2Joint::GetAngle in a

private class member variable and use it in lieu of the value returned by the function itself

when the current steering angle approached the target steering angle, but this did not

resolve the problem. As a result, the author concluded function

ODEHinge2Joint::GetAngle was not the cause of the problem and that the sudden

increase in angular velocity observed was an indirect effect of another problem.

The author determined the problem was caused by a combination of inaccurate

maximum angular velocity determination and insufficient torque. Diagnosing the

problem was made more difficult by lack of a return value from Gazebo function

ODEHinge2Joint::GetVelocity.

The packaged controller subtracted the angular velocity returned by function

ODEHinge2Joint::GetVelocity from the target velocity determined by the

- 252 -

controller every time the controller was updated. However, it is unclear if this was ever

successful because this function had no return value.

After revising function ODEHinge2Joint::GetVelocity to return the

angular velocity of the joint the author was able to use this function to determine that the

wheel joints were unable to reach the target angular velocities set by the improved

controller before the next controller update. As a result, the difference between the target

angle and current angle (returned by function ODEHinge2Joint::GetAngle)

increased as the simulation ran. The controller was setting the target angular velocity

based on the difference between the target steering angle and current steering angle,

which was large. Multiplying this difference by the update rate of the controller further

increased the resulting value. The controller was therefore attempting to set a target

velocity that far exceeded the current angular velocity, but was unable to achieve the

target steering angle in one controller time step.

The ODE Manual states: “The preferred method of setting body velocities during

the simulation is to use joint motors. They can set body velocities to a desired value in

one time step, provided that the force/torque limit is high enough.” ([44]). When the

author increased the torque applied to the model's joints to 10,000, the joints were able to

reach their target steering angle in one controller time step, eliminating the large

difference between their current steering angle and target steering angle. However,

although this resolved the problem by making it possible for the joints to reach their

target steering angle in one controller time step, this resolution did not address the root

cause of the problem, which was inaccurate maximum angular velocity determination.

- 253 -

When determining the maximum angular velocity at model CG in a turn of

arbitrary radius, the author failed to include a factor of 2π in the denominator. As a result,

the maximum angular velocity was approximately six times larger than it should have

been. This problem did not become apparent until the second test, because the improved

controller correctly limited the maximum steering angle of the model during the first test

to that allowed by the vehicle's turning circle, and because the author allowed the steering

wheels to turn to their maximum right extent before accelerating the model. Because the

controller limits the angular velocity of each steering wheel around the steering axis to

the calculated angular velocity or maximum angular velocity at model CG, whichever is

greater, this had the effect of allowing the controller to set an angular velocity which

exceeded the maximum angular velocity which would have prevented this problem.

In combination with increasing the torque applied to the steering axis so that the

steering wheels were able to reach their target steering angles in one improved controller

time step, correctly calculating the maximum angular velocity effectively resolved this

problem. The author eliminated the use of function

ODEHinge2Joint::GetVelocity entirely after noting that it occasionally returns

“nan” (literally “not a number”), and proposes this may be the reason the function had

no return value originally.

II.B. Swaybar implementation

While validating the improved controller, the author encountered a problem with

rollover at moderate speeds, when the controller was correctly setting the velocity of each

wheel so that rollover should have been prevented. Based on a review of the ODE

- 254 -

Manual, the author noted that similar problems were reported by other users, and that a

proposed solution was to implement “anti-sway” bars to limit the back-and-forth rotation

of a model around the x-axis.

The author revised the improved controller to calculate and apply a force to each

joint during each controller update to compensate for some of this motion. However, the

calculated displacement for each joint during each controller update was near zero, and

the force applied to each joint insignificant. The author concluded the swaybar

implementation was not a solution to the problem observed.

Through review of the model, the author determined that two of the representative

challenge vehicle characteristics in use by the controller were in error.

Prior to deciding to develop an improved controller to achieve stability at high

speeds, the author used the vehicle characteristics for a 2009 Honda Accord as the basis

for a model using the packaged controller. The mesh for this model was also used as the

“Car Obstacle”. See Figure 8.

The author was originally unable to determine the SSF of the Team 2005-06

challenge vehicle while researching the vehicle through commercial used car search

services ([102] and [103]). As a result, the author estimated the Team 2005-06 challenge

vehicle SSF using available information about the vehicle and general information about

the class of vehicle.

When revising the 2009 Honda Accord model to simulate the representative

challenge vehicle, the author calculated the height of vehicle CG using the alternate SSF

and placed a geom having a mass of 1720 kg at a height of 0.894 m as the chassis body of

- 255 -

the model. This was an error. The author later determined the Team 2005-06 challenge

vehicle had an SSF of 1.17 ([104] and [105]).

To eliminate other potential errors, the author reviewed all representative

challenge vehicle characteristics in use by the improved controller, and noted one

additional error: when the author converted from English to Metric units, the author

incorrectly calculated the rear track width of the model as 1.580 m (62.2 in), in lieu of

1.529 m (60.2 in), due to an error when entering data.

As a result of these errors, the effective SSF of the model was 0.88, but the

improved controller was calculating the maximum velocity of the model using a SSF of

1.17, and accelerating the model to a velocity which predictably resulted in rollover. The

author re-calculated the height of model CG using a SSF of 1.17 (0.653 m), and revised

the model XML file to correct these errors. The model was then able to successfully

complete the turn.

The author considers this incident, more than any other, highlights the ability of

ODE as an accurate physics simulation to help identify problems with world files,

models, or controller logic which are intended to model real-world interaction, and to

help model real-world interaction which cannot be realistically evaluated, e.g., the risk of

rollover.

III. PROBLEMS ENCOUNTERED DURING EVALUATION OF THE SIMULATION

TARGETS

III.A. “ODE Message 3” error

The author encountered the following ODE error when running the simulations:

- 256 -

ODE Message 3: LCP internal error, s <= 0 (s=...)

with different values for s. The ODE Manual states this error “is usually caused

by an object ramming into another with too much force (or just the right force).” ([44]),

and recommends decreasing the mass of the object or changing the simulation timestep to

eliminate the error, but also states: “this [error] won't crash your simulation”.

The mass of the model was based on the mass of the representative challenge

vehicle and the simulation timestep was selected through a process of trial and error to

produce a stable simulation. As a result, the author decided not to change the mass of the

model or the simulation timestep, and chose to ignore the error as a warning.

III.B. Angular unit inconsistencies between Player and Gazebo

The Player Project “World File Syntax” states: “Unless otherwise specified, the

world file uses SI units (meters, seconds, kilograms, etc). One exception is angles and

angular velocities, which are measured in degrees and degrees/sec, respectively.” ([106]).

However, the playerv utility returns angular values in radians and angular

velocities in radians/s. In addition, ODE functions in use by the improved controller such

as SetVelocity for ODEHingeJoint and ODEHinge2Joint joints expect radians/s.

The ODE Manual states: “...ODE doesn't use specific units. You can use anything

you wish, as long as you stay consistent with yourself.” ([44]). Although ODE is unit

agnostic, SI units are recommended.

For consistency with Gazebo world files, the improved controller reads Euler

angles (included in <rpy> declarations) and the maximum steering angle (included in

<steerMaxAngle> declarations) from an XML file which are measured in degrees,

- 257 -

but internally uses angles and angular velocities measured in radians and radians/s.

III.C. ODEHinge2Joint <anchorOffset> problem

The author encountered a number of problems when evaluating the packaged

steering controller. Specifically, the author was unable to interact with the simulation

until the AutoDisableFlag and SetParameters problems were resolved.

However, while attempting to resolve these problems, the author reviewed the ODE

Manual and determined that the order of the chassis and wheel bodies defined by the

<joint> declarations in each joint's <body1> and <body2> declarations was

reversed in some joints but not others.

Specifically, “body1” of joints “left_front_wheel_hinge” and

“right_front_wheel_hinge” was “chassis_body”, but “body1” of joints

“left_rear_wheel_hinge” and “right_rear_wheel_hinge” was the corresponding wheel. In

the example included with the ODE Manual, “body1” is the chassis and “body2” is the

wheel. The author attempted to resolve the problem by revising the order of the body

declarations so that “body1” was “chassis_body” and “body2” the corresponding wheel

for all joints. This was unsuccessful.

When the order was reversed so that “body1” was the chassis of the vehicle in

lieu of the wheel for all joints, the author observed a “wobble” when the “simplecar”

model was driven around in simulation. The wobble had the effect of causing the wheels

of the model to leave the ground at high speed. Because the wobble of the wheels was

not synchronized, the model was very unstable and would readily roll over. Without a

stable model capable of traveling at speeds typical of vehicles participating in the 2004

- 258 -

and 2005 GCE in simulation, the author would not be able to test the rollover condition

or effectively evaluate LIDAR.

Initially, the author believed the wobble was due to a mismatch between the

<anchorOffset> declaration and the body to which it referred, and attempted to

resolve this problem by revising the <anchorOffset> declaration for each wheel to

be relative to the chassis of the vehicle, not the wheel. This was unsuccessful.

At this point, the author requested clarification from the playerstage-gazebo

mailing list and received conflicting reports that the “simplecar” model and steering

controller were and were not working. Specifically, that another user was able to load the

model, but had not confirmed the model could be controlled using the playerv utility.

Based on a response, the author downloaded Robot Operating System (ROS) ([107])

using the svn utility for the purposes of evaluating it for use.

The author was unable to locate the equivalent ODE source files in the ROS

package “core code”, and did not want to download and install software which might

interfere with research to date. Rather than return to the beginning, install ROS, and

resolve problems similar to those encountered when installing Player and Gazebo, the

author elected not to continue with ROS.

While attempting to determine the cause of the wobble, the author reviewed the

ODE Manual and noted that similar problems due to off-axis rotation at high-speed have

been reported. ODE provides functions to limit the off-axis rotation of a body:

dBodySetFiniteRotationMode and dBodySetFiniteRotationAxis. The

author implemented these functions in files Body.cc and ODEBody.cc (and

- 259 -

corresponding header files) to utilize the ODE-provided functions in an attempt to limit

off-axis rotation: SetFiniteRotationMode and SetFiniteRotationAxis.

As a result of these changes, the author was able to read the values of two

parameters from the model XML file: finiteRotationMode and

finiteRotationAxis and set the finite rotation mode and axis of a body. However,

setting the finite rotation mode and axis of the wheel bodies did not eliminate the wobble.

At this point, the author hypothesized that the problem was caused by miniscule

errors in calculation over thousands of simulation cycles of the physics engine due to the

weight of the chassis (1720 kg), as ODE attempted to maintain the position of the chassis

body relative to each wheel. To eliminate the possibility that the length of the joints was

contributing to the problem observed, the author revised the model to eliminate the

z-dimension of the anchor offset by loading the model with the wheels at the same height

as the chassis body. As a result of this change, the author was able to identify the cause

of the wobble by experimentation.

The body of each wheel rotated in a plane at a fixed distance from its defined axis

(y-axis for the rear wheels and z-axis for the front wheels). By eliminating the

z-dimension anchor offset, the author changed the distance from the axis around which

the body rotated, resulting in clear rotation around the y-axis. By increasing the distance

from the axis, the effect was more pronounced.

As a result, the author reviewed the ODE Manual to determine what the intended

effect of the anchor offset was, and discovered that ODE does not provide a function to

set or return an anchor offset parameter. The anchor offset is used by file Joint.cc

- 260 -

(and corresponding header file) for “setting anchor relative to gazebo body frame origin”.

However, the anchor offset is applied to the body when the model is loaded. As a result,

subsequent attempts to rotate the body around an axis rotate the offset body.

ODE attempts to keep the bodies of a joint together. Small values for anchor

offset had less effect on the “simplecar” model than larger values, and extremely small

values had no observable effect. When the values for anchor offset were too large, and

one axis of rotation was eliminated, it became clear ODE was no longer able to

compensate for the forces being placed on the axis by the controller, and was allowing

the wheel bodies to freely rotate at a fixed distance from their axes, as defined by the

<anchorOffset> declaration for each joint in the “simplecar” model.

In addition, the author determined the effect of changes to the x-, y-, and

z-dimensions of the anchor offset in each joint by experimentation. The author

concluded the orientation of the anchor offset was not preserved when the

<anchorOffset> declaration was used. The wheels of the model were created from a

cylinder, a built-in type of geom. Gazebo's built-in cylinder geom is defined by a radius

and height. The height of the cylinder extends along the positive z-axis. To create a

wheel, the cylinders modeling the left wheels were rotated around the x-axis by 90

degrees by the wheel body's <rpy> declaration when the model was loaded. Based on

the behavior observed, if an anchor offset is declared for the wheel's corresponding joint

this rotation also rotates the axis around which the wheels rotate by 90 degrees so that the

anchor offset's positive y-dimension becomes the positive z-dimension, and positive

z-dimension becomes the negative y-dimension. A similar rotation was observed for the

- 261 -

cylinders modeling the right wheels. As a result, a front wheel would revolve around the

z-axis by the anchor offset's positive y-dimension, and around the y-axis by the anchor

offset's negative z-dimension. This made the problem more difficult to resolve.

The author considers this may be the cause of the failure of the front wheels of the

“simplecar” model to turn when a type of “full” was declared and the packaged steering

controller was in use. The revolution of the wheel bodies around the y- and z-axes may

effectively “bind” the wheels, preventing rotation. The author eliminated the

<anchorOffset> declaration from each joint, and the use of anchor offset entirely.

This greatly increased stability at high speed by eliminating the wobble, and made it

possible for the author to implement four-wheel drive at speeds typical of vehicles

participating in the 2004 or 2005 GCE.

The author considers this and other similar issues, such as the reversed order of

parameters described above, to be evidence of a “meandering direction of development”

evident through review of the Gazebo codebase. The Gazebo codebase is being actively

developed. Some features have been abandoned, others were never fully implemented,

and the purpose of some functions is unclear from function declarations.

For example, ODE has no intrinsic function to set a second hinge anchor in either

a Hinge or a Hinge2 joint. However, Gazebo functions

ODEHingeJoint::SetAnchor and ODEHinge2Joint::SetAnchor both

include a parameter index, which is commented out. Parameter index is commented

out in several other ODEHingeJoint functions.

In addition, the ODE Manual states: “These parameter names can be optionally

- 262 -

followed by a digit (2 or 3) to indicate the second or third set of parameters, e.g. for the

second axis in a hinge-2 joint, or the third axis in an AMotor joint.” ([44]). However, the

list of parameters to which the ODE Manual refers does not include parameter axis.

Functions for setting or getting the axis of a Hinge2 joint are documented by the ODE

Manual, but not parameter axis. As a result, the author concluded ODE may have, at

one time, used parameter names followed by a digit to indicate a second or third set of

parameters, and that Gazebo functions ODEHingeJoint::SetAnchor and

ODEHinge2Joint::SetAnchor may be referring to these numbers as the “index”,

and that “index” has since been commented out because Gazebo has not been updated to

remove these references.

Diagnosing the ODEHinge2Joint anchorOffset problem required several

days, during which more productive research was delayed.

III.D. OGRE::AxisAlignedBox error

The author encountered the following error while attempting to resolve the

ODEHinge2Joint <anchorOffset> problem reported above (only a portion of the

actual error message is included herein):

Assertion `(min.x <= max.x && min.y <= max.y && min.z

<= max.z) && "The minimum corner of the box must be

less than or equal to maximum corner"' failed.

In general, this error occurred immediately before a segmentation fault which

terminated the running simulation. The author did not encounter this error after resolving

the ODEHinge2Joint <anchorOffset> problem.

- 263 -

REFERENCES

1 DARPA, DARPA Grand Challenge 2004 Rules, version April 1.2, dated April 2,

2003

2 DARPA, DARPA Grand Challenge 2005 Rules, dated October 8, 2004

3 DARPA, Grand Challenge 2004 Final Report, July 30, 2004

4 House Report 106-945, Enactment of Provisions of H. R. 5408, The Floyd D.

Spence National Defense Authorization Act for Fiscal Year 2001, Library of

Congress, dated October 6, 2000

5 News Release, A Huge Leap Forward for Robotics R&D, dated October 9, 2005

6 DARPA, DARPA Grand Challenge 2004 Rules, dated January 5, 2004

7 DARPA, Report to Congress: DARPA Prize Authority, dated March, 2006

8 Press Release, Organizers of Autonomous Robotic Ground Vehicle Challenge

Announce Initial Team Selection, dated November 13, 2003

9 Press Release, Final Data from DARPA Grand Challenge, dated March 13, 2004

10 DARPA, QID Process Description, dated January 2, 2004

11 DARPA, Archived Grand Challenge 2004 Website,

http://www.darpa.mil/grandchallenge04/index.html

12 Carl D. Crane III, David G. Armstrong II, Robert Touchton, et al., Team CIMAR’s

NaviGATOR: An Unmanned Ground Vehicle for the 2005 DARPA Grand

Challenge, Journal of Field Robotics, Vol. 23, No. 8, Wiley Periodicals, Inc., 2006

13 Desert Buckeyes, ION: The Intelligent Off-Road Navigator The Desert Buckeyes’

- 264 -

entry in the DARPA Grand Challenge 2005, no date (2005)

14 Qi Chen and Ümit Özgüner, Intelligent Off-Road Navigation Algorithms and

Strategies of Team Desert Buckeyes in the DARPA Grand Challenge 2005,

Journal of Field Robotics, Vol. 23, No. 9, Wiley Periodicals, Inc., 2006

15 Richard Mason, Jim Radford, Deepak Kumar, et al., The Golem Group/University

of California at Los Angeles Autonomous Ground Vehicle in the DARPA Grand

Challenge, Journal of Field Robotics, Vol. 23, No. 8, Wiley Periodicals, Inc., 2006

16 MITRE Meteorites, 2005 DARPA Grand Challenge Entry, no date (2005)

17 Robert Grabowski, Richard Weatherly, Robert Bolling, et al., MITRE Meteor: An

Off-Road Autonomous Vehicle for DARPA’s Grand Challenge, Journal of Field

Robotics, Vol. 23, No. 9, Wiley Periodicals, Inc., 2006

18 MonsterMoto, Technical Paper, Revision A, dated August 29, 2005

19 Red Team, DARPA Grand Challenge 2005 Technical Paper, dated August 24,

2005

20 Red Team Too, DARPA Grand Challenge 2005 Technical Paper, dated August 24,

2005

21 Chris Urmson, Charlie Ragusa, David Ray, et al., A Robust Approach to the High-

Speed Navigation for Unrehearsed Desert Terrain, Journal of Field Robotics, Vol.

23, No. 8, Wiley Periodicals, Inc., 2006

22 SciAutonics/Auburn Engineering, The Autonomous Ground Vehicle RASCAL:

Team SciAutonics/Auburn Engineering in the DARPA Grand Challenge 2005, no

date

- 265 -

23 William Travis, Robert Daily, David M. Bevly, et al., SciAutonics-Auburn

Engineering’s Low-Cost High-Speed ATV for the 2005 DARPA Grand Challenge,

Journal of Field Robotics, Vol. 23, No. 8, Wiley Periodicals, Inc., 2006

24 Team Cajunbot, Technical Overview of CajunBot (2005), no date (2005)

25 Arun Lakhotia, Suresh Golconda, and Anthony Maida, et al., CajunBot:

Architecture and Algorithms, Journal of Field Robotics, Vol. 23, No. 8, Wiley

Periodicals, Inc., 2006

26 Team Caltech, DARPA Technical Paper: Team Caltech, dated August 29, 2005

27 Team Cornell, Technical Review of Team Cornell’s Spider, no date (2005)

28 Isaac Miller, Sergei Lupashin, Noah Zych, et al., Cornell University’s 2005

DARPA Grand Challenge Entry, Journal of Field Robotics, Vol. 23, No. 8, Wiley

Periodicals, Inc., 2006

29 Team ENSCO, Team ENSCO’s DEXTER, no date (2005)

30 Team TerraMax, DARPA Grand Challenge 2005, no date (2005)

31 Deborah Braid, Alberto Broggi, and Gary Schmiedel, The TerraMax Autonomous

Vehicle, Journal of Field Robotics, Vol. 23, No. 9, Wiley Periodicals, Inc., 2006

32 Red Team, DARPA Grand Challenge Technical Paper, Revision 6.1, dated April

8, 2004

33 Rob Meyer Productions, Technical Paper for DARPA Grand Challenge, no date

(2004)

34 Oshkosh Truck Co. and The Ohio State University (Team TerraMax), Technical

Paper for TerraMax, no date (2004)

- 266 -

35 Virginia Tech Grand Challenge Team, DARPA Grand Challenge 2005, no date

(2005)

36 Brett M. Leedy, Joseph S. Putney, Cheryl Bauman, et al., Virginia Tech’s Twin

Contenders: A Comparative Study of Reactive and Deliberative Navigation,

Journal of Field Robotics, Vol. 23, No. 9, Wiley Periodicals, Inc., 2006

37 Virginia Tech Team Rocky, DARPA Grand Challenge 2005, no date (2005)

38 The Player Project, http://playerstage.sourceforge.net (last accessed January 12,

2010)

39 CMake, CMake FAQ, http://www.cmake.org/Wiki/CMake_FAQ, dated January

28, 2010 (last accessed February 26, 2010)

40 The Player Project, Model Creation Tutorial,

http://playerstage.sourceforge.net/doc/Gazebo-manual-svn-

html/tutorial_model.html, dated August 4, 2007 (last accessed February 26, 2010)

41 The Player Project, Mesh Creation Tutorial,

http://playerstage.sourceforge.net/doc/Gazebo-manual-svn-

html/tutorial_mesh.html, dated August 4, 2007 (last accessed February 26, 2010)

42 The Blender Foundation, http://www.blender.org/ (last accessed February 26,

2010)

43 Torus Knot Software, Ltd., Blender Exporter

http://www.ogre3d.org/wiki/index.php/OGRE_Meshes_Exporter (last accessed

February 26, 2010)

44 Open Dynamics Engine, ODE Manual,

- 267 -

http://opende.sourceforge.net/wiki/index.php/Manual, dated July 22, 2008 (last

accessed February 26, 2010)

45 SICK AG, Technical Description - LMS200/211/221/291 Laser Measurement

Systems, dated December, 2006

46 SICK AG, LMS 200/LMS 211/LMS 220/LMS 221/LMS 291 Laser Measurement

Systems, June, 2003

47 Paul G. Trepagnier, Jorge Nagel, Powell M. Kinney, et al., KAT-5: Robust Systems

for Autonomous Vehicle Navigation in Challenging and Unknown Terrain, Journal

of Field Robotics, Vol. 23, No. 8, Wiley Periodicals, Inc., 2006

48 The Golem Group / UCLA, DARPA Grand Challenge Technical Paper, no date

(2005)

49 Stanford Racing Team, Stanford Racing Team’s Entry In The 2005 DARPA Grand

Challenge, no date (2005)

50 DARPA, DARPA Grand Challenge 2005 Route Data Definition File, August 3,

2005

51 Sebastian Thrun, Mike Montemerio, Hendrick Dahlkamp, et al., Stanley: The

Robot that Won the DARPA Grand Challenge, Journal of Field Robotics, Vol. 23,

No. 9, Wiley Periodicals, Inc., 2006

52 Team Overbot, Team Overbot, Revision 3, dated September 22, 2003 (the pages

of this reference are dated February 13, 2004)

53 The Gray Team, Team Gray Technical Paper, date August 28, 2005

54 The Golem Group, The Golem Group, no date (2004)

- 268 -

55 Palos Verdes High School Warriors, DARPA Grand Challenge Technical Paper,

March 1, 2004

56 Intelligent Vehicle Safety Technologies 1, Technical Description, dated August

29, 2005

57 Mojavaton, Technical Paper, dated August 28, 2005

58 A. I. Motorvators, AI Motorvators Technical paper, dated March 4, 2004

59 Axion Racing, Technical Paper, dated February 29, 2004

60 Princeton University, Technical Paper, no date (2005)

61 Team Caltech, Technical Paper, dated February 23, 2004

62 Virginia Department of Education in cooperation with the Virginia Department of

Motor Vehicles, Curriculum and Administrative Guide for Driver Education in

Virginia, 2001

63 Virginia Department of Education in cooperation with the Virginia Department of

Motor Vehicles, Curriculum Scope and Sequence Modules for Driver Education

in Virginia, Module Eleven: Behind-the-Wheel and In-Car Observation, dated

August, 2001

64 SciAutonics I, Technical Paper for DARPA Grand Challenge, no date

65 AVID-ET and SciAutonics, Technical Paper Addendum for DARPA Grand

Challenge, no date (2004)

66 Axion Racing, DARPA Grand Challenge 2005 Technical Paper, dated August 11,

2005

67 Team Arctic Tortoise, Arctic Tortoise Technical Paper, Revision 1, no date (2004)

- 269 -

68 Chris Urmson, Joshua Anhalt, Michael Clark, et al., High-Speed Navigation of

Unrehearsed Terrain: Red Team Technology for Grand Challenge 2004, CMU-

RI-TR-04-37, The Robotics Institute, Carnegie-Mellon University, June, 2004.

69 DARPA, DARPA Grand Challenge Team Newsletter #1, dated August 27, 2003

70 Department of Defense, DARPA Grand Challenge: Defense Advanced Research

Projects Agency Competition for Autonomous Robotic Ground Vehicles; 2004,

2005, and 2007 Events, Urban Challenge, Reports, Movies (Two CD-ROM Set),

Progressive Management, dated May 2, 2007

71 Martin Buehler, Karl Iagnemma, and Sanjiv Singh, The 2005 DARPA Grand

Challenge: The Great Robot Race, Springer-Verlag Berlin Heidelberg, 1st ed.,

dated October 23, 2007

72 Amazon.com, Inc., http://www.amazon.com (last accessed August 10, 2009)

73 Anand R. Atreya, Bryan C. Cattle, Brendan M. Collins, et al., Prospect Eleven:

Princeton University’s Entry in the 2005 DARPA Grand Challenge, Journal of

Field Robotics, Vol. 23, No. 9, Wiley Periodicals, Inc., 2006

74 Alain Kornhauser, About Prospect Eleven and Princeton University’s “DARPA

Project”, Princeton University, dated November 29, 2005

75 Press Release, DARPA Grand Challenge Finalizes Field for Qualification,

Inspection and Demonstration Event, dated December 19, 2003

76 Press Release, Finalists Selected for DARPA Grand Challenge, dated October 5,

2005

77 DARPA, Archived Grand Challenge 2005 Website,

- 270 -

http://www.darpa.mil/grandchallenge05/index.html

78 irobotics.org, http://www.irobotics.org (last accessed January 5, 2010)

79 The Player Project, Installation (Linux),

http://playerstage.sourceforge.net/doc/Gazebo-manual-cvs-html/install.html, dated

September 12, 2005

80 The Player Project, Installation (Linux),

http://playerstage.sourceforge.net/doc/Gazebo-manual-svn-html/install.html,

dated August 4, 2007

81 Gazebo, README, version 0.9.0

82 irobotics.org, Player 2.1.1 / Gazebo 0.8 SVN rev. 6886 Installation on Fedora 9,

http://www.irobotics.org/gazebo08.f8.html, dated August 19, 2008

83 The Player Project, Installation Instructions for Gazebo,

http://playerstage.sourceforge.net/wiki/Install, dated March 3, 2009

84 The Player Project, Installation Instructions for Gazebo,

http://playerstage.sourceforge.net/wiki/Install, dated January 12, 2010 (last

accessed January 12, 2010)

85 The Player Project, Prerequisites, http://playerstage.sourceforge.net/doc/Gazebo-

manual-svn-html/prerequisites.html, dated August 4, 2007

86 NVIDIA Corporation, Unix Drivers Portal Page,

http://www.nvidia.com/object/unix.html (last accessed December 18, 2009)

87 Novell, Inc., NVIDIA Installer HOWTO for SUSE LINUX users,

http://www.suse.de/~sndirsch/nvidia-installer-HOWTO.html (last accessed

- 271 -

December 18, 2009)

88 FreeImage, README.linux, version 3.13.0

89 Object-oriented Input System, ReadMe.txt, version 1.2.0

90 Open Dynamics Engine, INSTALL.txt, version 0.11.1

91 Fast Light ToolKit, README, version 1.1.9

92 CrazyEddie's GUI System, README, version 0.6.2b

93 Crazy Eddie's GUI System Project, http://www.cegui.org.uk (last accessed

September 11, 2009)

94 Free Software Foundation, Inc., Coreutils - GNU core utilities,

http://www.gnu.org/software/coreutils/, dated February 21, 2009 (last accessed

December 18, 2009)

95 Torus Knot Software, Ltd., http://www.ogre3d.org (last accessed September 10,

2009)

96 NVIDIA Corporation, http://developer.nvidia.com (last accessed September 9,

2009)

97 FFmpeg, INSTALL, version 0.5

98 The Player Project, Standard Install Procedure,

http://playerstage.sourceforge.net/doc/Player-cvs/player/install.html, dated

September 12, 2005

99 Player, README, version 3.0.0

100 Player, INSTALL, version 3.0.0

101 John Hsu, Re: [PlayerStage-Gazebo] Problem with simplecar.world, playerstage-

- 272 -

gazebo mailing list, dated January 19, 2010

102 Edmunds, http://www.edmunds.com/

103 Cars.com, http://www.cars.com/

104 Motor Trend, http://www.motortrend.com/

105 Autobuyguide.com, http://www.autobuyguide.com (last accessed March 25,

2010)

106 The Player Project, World File Syntax,

http://playerstage.sourceforge.net/doc/Gazebo-manual-svn-

html/config_syntax.html, dated August 4, 2007 (last accessed March 15, 2010)

107 ROS.org, http://www.ros.org/wiki/ (last accessed March 15, 2010)

- 273 -

- 274 -

1. The text of the footnote reported by DARPA differs slightly from the text of the

Fiscal Year 2001 National Defense Authorization Act, which states: “It shall be a

goal of the Armed Forces to achieve the fielding of unmanned, remotely

controlled technology such that... by 2015, one-third of the operational ground

combat vehicles are unmanned.” ([4], p. 46).

2. Several teams participating in the 2004 and 2005 GCE made extensive use of pre-

planning or pre-mapping prior to the race to effectively eliminate from

consideration for the controlling intelligence all terrain but the actual course

defined by the RDDF. The task of the controlling intelligence was therefore made

simpler, and became one of distinguishing the course from terrain which had been

eliminated from consideration by the team, and avoiding unintended obstacles.

3. Ostensibly, the criteria used to determine which vehicles were of interest to the

DOD were reported by DARPA. However, only 25 of the 86 technical proposals

received by DARPA are available for review, and it is unclear why 41 teams

submitted technical proposals describing vehicles which did not satisfy these

criteria. The author proposes the reported criteria were not the only criteria used

by DARPA to determine which vehicles were of interest to the DOD, but

concluded the published record does not provide enough information to be able to

determine what deficiencies or weaknesses caused 41 of 86 teams to be

eliminated.

4. DARPA stated: “...DARPA selected 19 teams for advancement to the next phase

of the Grand Challenge and established a site visit process to determine the final 6

- 275 -

teams.” ([3], p. 4). However, DARPA selected 18 teams to participate in the 2004

QID, in lieu of the 19 claimed. The technical proposal submitted by the ION

Team was one of 19 technical proposals described by DARPA as “completely

acceptable” on November 13, 2003, approximately four months prior to the 2004

GCE ([8]), but the ION Team was not selected to participate in the 2004 QID.

5. DARPA stated the purpose of the technical inspection was to ensure each

challenge vehicle “complied with all rules and was safe to operate”. Published

records indicate the technical inspection did not identify challenge vehicles which

were not safe to operate. For example, DARPA stated ([9]):

[Team 2004-02] - Vehicle circled the wrong way in the

start area. Vehicle was removed from the course.

[Team 2004-09] - Vehicle hit a wall in the start area.

Vehicle was removed from the course.

[Team 2004-16] - Vehicle brushed a wall on its way out

of the chute. Vehicle has been removed from the

course.

Although some time elapsed between the technical inspection and the

2004 GCE, it is unreasonable to conclude changes made by Teams 2004-02,

2004-09, and 2004-16 were responsible for their disqualification.

As a result, the author concluded the purpose of the technical inspection

was not to ensure each challenge vehicle “was safe to operate”, but that it

“complied with all rules” DARPA established concerning devices emitting

radiation, warning devices, e-stop requirements, etc.

- 276 -

6. DARPA identified obstacles selected as “representative” ([10]), however

published records support a conclusion that obstacles selected as representative

were not comprehensive. Several teams selected to participate in the 2004 GCE

were eliminated by obstacles not identified as representative, and which teams

apparently did not encounter during the 2004 QID, such as wire, fence, brush, or

obstacles too small to detect. For example, DARPA stated ([9]):

[Team 2004-04] - At mile 0.45, vehicle ran into some

wire and got totally wrapped up in it.

[Team 2004-06] - At mile 6.0, vehicle was paused to

allow a wrecker to get through, and, upon resuming

motion, vehicle was hung up on a football-sized rock.

[Team 2004-17] - At mile 1.3, vehicle veered off

course, went through a fence, tried to come back on

the road, but couldn’t get through the fence again.

[Team 2004-23] - Several times, the vehicle sensed

some bushes near the road, backed up and corrected

itself. At mile 1.2, it was not able to proceed

further.

7. DARPA did not publish the point deductions in use during the 2004 QID. It is

unclear if, for example, more points were deducted for exceeding the speed limit

by 20 mph versus five mph, or if collisions with obstacles were “weighed” by

assigning a severity to the collision.

8. DARPA did not request teams participating in the 2004 GCE respond to a

- 277 -

question similar to 2005 GCE SQ 2.5.1.

9. Teams 2004-10 and 2004-11 referred to the use of “simulation” but not a

simulation environment similar to the Player Project:

• Team 2004-10 stated: “Post-processing synthesized goodness-maps and facilitated

run-simulations in addition to physical testing.” ([32], p. 6).

• Team 2004-11 stated: “Based on the earlier simulation we had written, we are still

busy at this date (24 Feb) arriving at an optimum arrangement and timing for the

peripherals to 'talk' to each other.” ([33], p. 8).

10. Teams 2005-13 and 2005-14 originally proposed using seven LIDAR sensors

during the 2005 GCE.

11. Other body and geom primitives supported by Gazebo include: box, cylinder,

sphere, trimesh, cone, heightmap, and plane.

12. This was not possible with the representative challenge vehicle. By default,

Gazebo places the CG of a body at its center. Use of a trimesh geom primitive for

the representative challenge vehicle model would have placed the model CG

higher than the representative challenge vehicle CG, resulting in simulated

vehicle dynamics which inaccurately model real world vehicle dynamics.

13. The field-of-view of the Navtech DS2000 RADAR is 360 degrees. However,

Teams 2005-13 and 2005-14 stated: “Most of the RADAR’s scan is obscured by

the vehicle or brush guard. Its effective field of view is 70 degrees 40-70 meters

in front of the vehicle.” ([19], p. 8 and [20], p. 8).

14. Sensors with a maximum effective range greater than 20 m (corresponding to a

- 278 -

stopping distance of 19.3 m at a maximum velocity of 25 mph) were not required

for a team challenge vehicle to complete the 2004 or 2005 GCE course in less

than ten hours. However, the effective use of complementary sensors to extend

obstacle detection range and allow driving at higher speeds provided a

competitive advantage to teams with significant experience and several

potentially disruptive teams. Team 2005-16 was the most successful team to use

complementary sensors.

15. DARPA did not identify which team proposed this. However, Teams 2004-11 and

2004-20 reported technologies which were similar in concept:

• Team 2004-11 stated: “In addition, we have kept the odometer on the axle with no

brakes. This allows us to sense a skid or inadequate braking impulse. We have no

algorithm for the former.” ([33], p. 2).

• Team 2004-20 stated: “Vehicle speed as measured by the radar speedometer is

compared with vehicle speed as measured at the driveshaft to detect slippage.”

([52], p. 6).

16. Ironically, DARPA did not request teams participating in the 2004 QID or GCE or

2005 GCE describe how they would handle the loss of any other sensors.

17. Although not directly related to navigation sensors, several teams reported the

potential military deployment of autonomous ground vehicles was a consideration

in their selection of obstacle and path detection sensors. For example, Team

2005-12 stated: “Passive sensing offers advantages in both a military context,

where undetectable sensors are crucial for effective operation and in a civilian

- 279 -

context, in which multiple autonomous vehicles must not interfere with one

another.” ([60], p. 2).

18. Teams 2005-16 and 2005-21 described calibration of sensors which was similar in

concept. However, calibration of sensors was performed by the team. The

challenge vehicle controlling intelligence was not taught to learn to interpret

sensor data.

• Team 2005-16 stated: “...the sensors are periodically calibrated using data of

dedicated obstacles of known dimensions. Calibration is an offline process which

involves human labeling of sensor data. The calibration process adjusts the exact

pointing directions of the individual sensors by minimizing a quadratic error,

defined through multiple sightings of the same calibration obstacle.” ([49], p. 8).

• Team 2005-21 stated: “Thanks to a precise calibration of the cameras – performed

on a graduated grid – the three degrees of freedom specifying cameras orientation

are fixed to known values, and in particular – in order to ease the subsequent

processing – the yaw and roll angles are fixed to zero for all cameras.” ([30],

p. 10).

19. Team 2005-12 later stated: “...[The challenge vehicle] suffered a communications

failure between the GPS unit and the guidance computer just before Beer Bottle

Pass, a mountain pass near the end of the course, that would have ended a fully

autonomous attempt.” ([73], p. 753). Obviously, a similar communications failure

during the 2005 GCE would have resulted in a similar outcome. However, the

author is here attempting to distinguish between potentially-disruptive teams

- 280 -

which proposed competent system integration at a reasonable procurement cost

and other teams, and there is no evidence supporting a conclusion a similar

communications failure would have occurred during the 2005 GCE if Team

2005-12 had not failed to complete the 2005 GCE due to the programming error

reported.

20. Teams are listed in alphabetical order, based on the alphabetizing scheme utilized

by DARPA, in which the words “a”, “an”, or “the” are not considered significant

([75]). DARPA established an alternate alphabetizing scheme which treats the

word “team” as “a”, “an” or “the” ([76]). The original alphabetizing scheme was

retained so that the teams would appear in the same order when referenced herein.

In addition, to preserve alphabetical order, the occurrence of the team

names “MonsterMoto” and “Mojavaton”, in the order presented by [76], was

reversed.

- 281 -

